【題目】“校園安全”受到全社會的廣泛關(guān)注,信豐縣某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖所示的兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題

(1)接受問卷調(diào)查的學(xué)生共有  人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形圓心角是  度;

(2)請補全條形統(tǒng)計圖;

(3)若該中學(xué)共有學(xué)生1200人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).

【答案】(1)60,90;(2)補圖見解析;(3)400人.

【解析】

(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角;

(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;

(3)利用樣本估計總體的方法,即可求得答案.

(1)∵了解很少的有30人,占50%,

∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);

∴扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為:×360°=90°;

故答案為:60,90;

(2)60﹣15﹣30﹣10=5;

補全條形統(tǒng)計圖得:

(3)根據(jù)題意得:1200×=400(人),

則估計該中學(xué)學(xué)生中對校園安全知識達到了解基本了解程度的總?cè)藬?shù)為400人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紙在某謄印社復(fù)印文件,復(fù)印頁數(shù)不超過時每頁收費元;復(fù)印頁數(shù)超過時,超過部分每頁收費元.在某圖書館復(fù)印同樣的文件,不論復(fù)印多少頁,每頁收費元,如何根據(jù)復(fù)印的頁數(shù)選擇復(fù)印的地點使總價格比較便宜?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°

1)求證:AC∥DE;

2)過點BBF⊥AC于點F,連接EF,試判別四邊形BCEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為-7,點B表示的數(shù)為5,點C到點A,點B的距離相等,動點P從點A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動的時間為>0)秒

(1)點C表示的數(shù)是_________.

(2)求當(dāng)等于多少秒時,點P到達點B

(3)點P表示的數(shù)是_________(用含有的代數(shù)式表示).

(4)求當(dāng)t等于多少秒時,PC之間的距離為2個單位長度(只列式,不計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(2);

(3) (4);

(5); (6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF,BFEF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC。

1)求證:OE=OF

2)若BC=,求AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列單項式:,,,…,,…寫出第個單項式,為了解這個問題,特提供下面的解題思路.

這組單項式的系數(shù)的符號,絕對值規(guī)律是什么?

這組單項式的次數(shù)的規(guī)律是什么?

根據(jù)上面的歸納,你可以猜想出第個單項式是什么?

請你根據(jù)猜想,請寫出第個,第個單項式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,二次函數(shù)y=ax2+2ax﹣3a(a≠0)圖象的頂點為H,與x軸交于A、B兩點(B在A點右側(cè)),點H、B關(guān)于直線l: 對稱.
(1)求A、B兩點坐標(biāo),并證明點A在直線l上;
(2)求二次函數(shù)解析式;
(3)過點B作直線BK∥AH交直線l于K點,M、N分別為直線AH和直線l上的兩個動點,連接HN、NM、MK,求HN+NM+MK和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=,把邊BC繞點B逆時針旋轉(zhuǎn)30°得到線段BP,連接AP并延長交CD于點E,連接PC,則三角形PCE的面積為____________

查看答案和解析>>

同步練習(xí)冊答案