【題目】如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=4.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.
科目:初中數(shù)學 來源: 題型:
【題目】水果基地為了選出適應市場需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個品種的小西紅柿秧苗各 300 株分別種植在甲、乙兩個大棚. 對于市場最為關注的產(chǎn)量和產(chǎn)量的穩(wěn)定性,進行了抽樣調(diào)查,從甲、乙兩個大棚各收集了 24 株秧苗上的小西紅柿的個數(shù),并對數(shù)據(jù)進行整理、描述和分析。
下面給出了部分信息:(說明:45 個以下為產(chǎn)量不合格,45 個及以上為產(chǎn)量合格,其中 45~65 個為產(chǎn)量良好,65~85 個為產(chǎn)量優(yōu)秀)
a.補全下面乙組數(shù)據(jù)的頻數(shù)分布直方圖(數(shù)據(jù)分成 6 組: 25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85):
b.乙組數(shù)據(jù)在產(chǎn)量良好(45≤x<65)這兩組的具體數(shù)據(jù)為: 46 46 47 47 48 48 55 57 57 57 58 61
c.數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 52.25 | 51 | 58 | 238 |
乙 | 52.25 | 57 | 210 |
(1)補全乙的頻數(shù)分布直方圖.
(2)寫出表中的值.
(3)根據(jù)樣本情況,估計乙大棚產(chǎn)量良好及以上的秧苗數(shù)為 株.
(4)根據(jù)抽樣調(diào)查情況,可以推斷出 大棚的小西紅柿秧苗品種更適應市場需求,寫出理由.(至少從兩個不同的角度說明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).
(1)求反比例函數(shù)的解析式;
(2)當y2>y1時,求x的取值范圍;
(3)求點B到直線OM的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,,,,,點E為AB邊上一點,且.點F是BC邊上的一個動點(與點B、點C不重合),點G在射線CD上,且.設BF的長為x,CG的長為y.
(1)當點G在線段DC上時,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當以點B為圓心,BF長為半徑的⊙B與以點C為圓心,CG長為半徑的⊙C相切時,求線段BF的長;
(3)當為等腰三角形時,直接寫出線段BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,
(1)如圖,連接AC、OD,設∠OAC=α,請用α表示∠AOD;
(2)如圖,當點B為的中點時,求點A、D之間的距離:
(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):.
(1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?
(成本=進價×銷售量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊三角形ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中,正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的⊙O交AC于點E,過點E作AB的垂線交AB于點F,交CB的延長線于點G,且∠ABG=2∠C.
(1)求證:EG是⊙O的切線;
(2)若tanC=,AC=8,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com