【題目】如圖,一次函數(shù)y1=﹣x1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2m).

1)求反比例函數(shù)的解析式;

2)當(dāng)y2y1時(shí),求x的取值范圍;

3)求點(diǎn)B到直線OM的距離.

【答案】1y=﹣;(2)﹣2x0x1;(3

【解析】

1)先把M-2,m)代入y=-x-1求出m得到M-2,1),然后把M點(diǎn)坐標(biāo)代入y=中可求出k的值,從而得到反比例函數(shù)解析式;
2)通過解方程組得反比例函數(shù)與一次函數(shù)的另一個(gè)交點(diǎn)坐標(biāo)為(1,-2),然后寫出反比例函數(shù)圖象在一次函數(shù)圖象上方所對(duì)應(yīng)的自變量的范圍即可;
3)設(shè)點(diǎn)B到直線OM的距離為h,然后利用面積法得到h=1,于是解方程即可,

解:(1)把M(﹣2,m)代入y=﹣x1m211,則M(﹣2,1),

M(﹣2,1)代入yk=﹣2×1=﹣2,

所以反比例函數(shù)解析式為y=﹣;

2)解方程組 ,

則反比例函數(shù)與一次函數(shù)的另一個(gè)交點(diǎn)坐標(biāo)為(1,﹣2),

當(dāng)﹣2x0x1時(shí),y2y1;

3OMSOMB×1×21,

設(shè)點(diǎn)B到直線OM的距離為h

h1,解得h

即點(diǎn)B到直線OM的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2-2x-3x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,其對(duì)稱軸與拋物線相交于點(diǎn)M,與x軸相交于點(diǎn)N,點(diǎn)P是線段MN上的一個(gè)動(dòng)點(diǎn),連接CP,過點(diǎn)PPECPx軸于點(diǎn)E

1)求拋物線的頂點(diǎn)M的坐標(biāo);

2)當(dāng)點(diǎn)E與原點(diǎn)O的重合時(shí),求點(diǎn)P的坐標(biāo);

3)求動(dòng)點(diǎn)E到拋物線對(duì)稱軸的最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的身體素質(zhì)情況,體育老師對(duì)九(1)班50位學(xué)生進(jìn)行測試,根據(jù)測試評(píng)分標(biāo)準(zhǔn),將他們的得分進(jìn)行統(tǒng)計(jì)后分為AB,C,D四等,并繪制成如圖所示的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

等第

成績(得分)

頻數(shù)(人數(shù))

頻率

A

10

7

0.14

9

x

m

B

8

15

0.30

7

8

0.16

C

6

4

0.08

5

y

n

5分以下

3

0.06

合計(jì)

50

1

1)直接寫出:mx,y

2)求表示得分為C等的扇形的圓心角的度數(shù);

3)如果該校九年級(jí)共有700名學(xué)生,試估計(jì)這700名學(xué)生中成績達(dá)到A等和B等的人數(shù)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形OEFG的頂點(diǎn)O與正方形ABCD的中心O重合,若正方形OEFGO點(diǎn)旋轉(zhuǎn).

1)探究:在旋轉(zhuǎn)的過程中線段BE與線段CG有什么數(shù)量關(guān)系及位置關(guān)系?證明你的結(jié)論;

2)若正方形ABCD的邊長為a,探究:在旋轉(zhuǎn)過程中四邊形OMCN的面積是否發(fā)生變化?若不變化求其面積,若變化指出變化過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于O,過點(diǎn)CBC的垂線交OD,點(diǎn)EBC的延長線上,且∠DEC=∠BAC

1)求證:DEO的切線;

2)若ACDE,當(dāng)AB8CE2時(shí),求O直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在奉賢創(chuàng)建文明城區(qū)的活動(dòng)中,有兩段長度相等的彩色道磚鋪設(shè)任務(wù),分別交給甲、乙兩個(gè)施工隊(duì)同時(shí)進(jìn)行施工.如圖是反映所鋪設(shè)彩色道磚的長度y(米)與施工時(shí)間x(時(shí))之間關(guān)系的部分圖象.請(qǐng)解答下列問題:

1)求乙隊(duì)在2≤x≤6的時(shí)段內(nèi),yx之間的函數(shù)關(guān)系式;

2)如果甲隊(duì)施工速度不變,乙隊(duì)在開挖6小時(shí)后,施工速度增加到12/時(shí),結(jié)果兩隊(duì)同時(shí)完成了任務(wù).求甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚的長度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,過點(diǎn)A的圓O交邊AB于點(diǎn)E,交邊AD于點(diǎn)F,已知AD=5AE=2,AF=4.如果以點(diǎn)D為圓心,r為半徑的圓D與圓O有兩個(gè)公共點(diǎn),那么r的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(3,y1)B(2,y2)均在拋物線yax2+bx+c上,點(diǎn)P(m,n)是該拋物線的頂點(diǎn),若y1y2n,則m的取值范圍是(  )

A.3m2B.m-C.m>﹣D.m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購置一批電子白板和臺(tái)式電腦.經(jīng)招投標(biāo),購買一臺(tái)電子白板比購買2臺(tái)臺(tái)式電腦多3000元,購買2臺(tái)電子白板和3臺(tái)臺(tái)式電腦共需2.7萬元.

1)求購買一臺(tái)電子白板和一臺(tái)臺(tái)式電腦各需多少元?

2)根據(jù)該校實(shí)際情況,購買電子白板和臺(tái)式電腦的總臺(tái)數(shù)為24,并且臺(tái)式電腦的臺(tái)數(shù)不超過電子白板臺(tái)數(shù)的3倍.問怎樣購買最省錢?

查看答案和解析>>

同步練習(xí)冊(cè)答案