【題目】如圖,拋物線 經(jīng)過A(-3,0),C(5,0)兩點(diǎn),點(diǎn)B為拋物線頂點(diǎn),拋物線的對(duì)稱軸與x軸交于點(diǎn)D

(1)求拋物線的解析式;

(2)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿線段BD向終點(diǎn)D作勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t,過點(diǎn)PPMBD,交BC于點(diǎn)M,以PM為正方形的一邊,向上作正方形PMNQ,邊QNBC于點(diǎn)R,延長(zhǎng)NMAC于點(diǎn)E

①當(dāng)t為何值時(shí),點(diǎn)N落在拋物線上;

②在點(diǎn)P運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得四邊形ECRQ為平行四邊形?若存在,求出此時(shí)刻的t值;若不存在,請(qǐng)說明理由.

【答案】1 ;(2t=4;

【解析】試題分析:(1)把點(diǎn)A、C坐標(biāo)代入拋物線解析式得到關(guān)于a、b的二元一次方程組解方程組求出a、b的值即可得解;

2)根據(jù)拋物線解析式求出頂點(diǎn)B的坐標(biāo)然后根據(jù)相似三角形對(duì)應(yīng)邊成比例用t表示出PM,再求出NE的長(zhǎng)度表示出點(diǎn)N的坐標(biāo),再根據(jù)點(diǎn)N在拋物線上,把點(diǎn)N的坐標(biāo)代入拋物線,解方程即可得解;

根據(jù)PM的長(zhǎng)度表示出QD,再利用待定系數(shù)法求出直線BC的解析式然后根據(jù)直線BC的解析式求出點(diǎn)R的橫坐標(biāo),從而求出QR的長(zhǎng)度,再表示出EC的長(zhǎng)度,然后根據(jù)平行四邊形對(duì)邊平行且相等列式求解即可.

試題解析:(1y=ax2+bx+經(jīng)過A3,0),C5,0)兩點(diǎn),解得 ,拋物線的解析式為;

2=x22x+1+=x12+8,點(diǎn)B的坐標(biāo)為(18).設(shè)直線BC的解析式為y=kx+m,,解得 ,所以直線BC的解析式為y=2x+10拋物線的對(duì)稱軸與x軸交于點(diǎn)DBD=8,CD=51=4PMBD,PMCD∴△BPM∽△BDC,,,解得PM=t,OE=1+tME=-2(1+t)+10=8-t..四邊形PMNQ為正方形,NE=NM+ME=8t+t=8t

點(diǎn)N的坐標(biāo)為(1+t,8t),若點(diǎn)N在拋物線上,則﹣1+t12+8=8t整理得,tt4=0,解得t1=0(舍去),t2=4所以,當(dāng)t=4秒時(shí),點(diǎn)N落在拋物線上

存在.理由如下

PM=t,四邊形PMNQ為正方形QD=NE=8t直線BC的解析式為y=2x+10,∴﹣2x+10=8t,解得x=t+1QR=t+11=t.又∵EC=CDDE=4t,根據(jù)平行四邊形的對(duì)邊平行且相等可得QR=ECt=4t,解得t=,此時(shí)點(diǎn)PBD,所以,當(dāng)t=時(shí)四邊形ECRQ為平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六個(gè)完全相同的小矩形排成一個(gè)大矩形,AB是其中一個(gè)小矩形的對(duì)角線,請(qǐng)?jiān)诖缶匦沃型瓿上铝挟媹D,要求:①僅用無刻度直尺②保留必要的作圖痕跡.

(1)在如圖中畫出與線段AB平行的線段CD

(2)在如圖中畫出過點(diǎn)A與線段AB垂直的線段AE

(3)在如圖中畫出線段AB的垂直平分線MN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線AC上,且AE=CF.求證:

(1)DE=BF;

(2)四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將一根繩子平放在桌上,用剪刀任意剪n刀(如圖),繩子變成n+1段;若將繩子對(duì)折1次后從中間剪一刀(如圖),繩子的刀口 個(gè),繩子變成 段;若將繩子對(duì)折2次后從中間剪一刀,繩子的刀口有 個(gè),繩子變成 段;若將繩子對(duì)折n次后從中間剪一刀,繩子的刀口 個(gè),繩子變成 段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在數(shù)軸上表示的數(shù)分別為-4+16A,B兩點(diǎn)間的距離可記為AB

(1) 點(diǎn)C在數(shù)軸上A,B兩點(diǎn)之間,且AC=BC,C點(diǎn)對(duì)應(yīng)的數(shù)是_________

(2) 點(diǎn)C在數(shù)軸上A,B兩點(diǎn)之間,且BC=4AC,C點(diǎn)對(duì)應(yīng)的數(shù)是_________

(3) 點(diǎn)C在數(shù)軸上,AC+BC=30,求點(diǎn)C對(duì)應(yīng)的數(shù)?

(4) 若點(diǎn)A在數(shù)軸上表示的數(shù)是a,B表示的數(shù)是b,AB=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,RtABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).

(1)ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到A1B1C,請(qǐng)畫出A1B1C的圖形.

(2)平移ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請(qǐng)畫出平移后對(duì)應(yīng)的A2B2C2的圖形.

(3)若將A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是邊長(zhǎng)為的正方形ABCD的對(duì)角線BD上的動(dòng)點(diǎn),過點(diǎn)P分別作PEBC于點(diǎn)E,PFDC于點(diǎn)F,連接AP并延長(zhǎng),交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EFAH于點(diǎn)G,當(dāng)點(diǎn)PBD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;AHEF;AP2=PMPH;EF的最小值是.其中正確結(jié)論是( 。

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州享有中國(guó)筆都之稱,其產(chǎn)品暢銷全球,某制筆企業(yè)欲將n件產(chǎn)品運(yùn)往A,B,C三地銷售,要求運(yùn)往C地的件數(shù)是運(yùn)往A地件數(shù)的2倍,各地的運(yùn)費(fèi)如圖所示.設(shè)安排x件產(chǎn)品運(yùn)往A地.

(1)當(dāng)n=200時(shí),根據(jù)信息填表:

A

B

C

合計(jì)

產(chǎn)品件數(shù)(件)

x

2x

200

運(yùn)費(fèi)(元)

30x

若運(yùn)往B地的件數(shù)不多于運(yùn)往C地的件數(shù),總運(yùn)費(fèi)不超過4000元,則有哪幾種運(yùn)輸方案?

(2)若總運(yùn)費(fèi)為5800元,求n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是直角三角形,ACB=90°

(1)尺規(guī)作圖:作C,使它與AB相切于點(diǎn)D,與AC相交于點(diǎn)E,保留作圖痕跡,不寫作法,請(qǐng)標(biāo)明字母.

(2)在你按(1)中要求所作的圖中,若BC=3,A=30°,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案