【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖1擺放,分別延長(zhǎng)DA和QP交于點(diǎn)O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點(diǎn)O按逆時(shí)針方向開始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).
發(fā)現(xiàn):

(1)當(dāng)α=0°,即初始位置時(shí),點(diǎn)P直線AB上.(填“在”或“不在”)求當(dāng)α是多少時(shí),OQ經(jīng)過點(diǎn)B.
(2)在OQ旋轉(zhuǎn)過程中,簡(jiǎn)要說明α是多少時(shí),點(diǎn)P,A間的距離最小?并指出這個(gè)最小值;
(3)如圖2,當(dāng)點(diǎn)P恰好落在BC邊上時(shí),求a及S陰影
拓展:
如圖3,當(dāng)線段OQ與CB邊交于點(diǎn)M,與BA邊交于點(diǎn)N時(shí),設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長(zhǎng),并求x的取值范圍.
探究:當(dāng)半圓K與矩形ABCD的邊相切時(shí),求sinα的值.

【答案】
(1)在
(2)解:如圖2,連接AP,

∵OA+AP≥OP,

當(dāng)OP過點(diǎn)A,即α=60°時(shí),等號(hào)成立,

∴AP≥OP﹣OA=2﹣1=1,

∴當(dāng)α=60°時(shí),P、A之間的距離最小,

∴PA的最小值=1


(3)解:如圖2,

設(shè)半圓K與PC交點(diǎn)為R,連接RK,過點(diǎn)P作PH⊥AD于點(diǎn)H,

過點(diǎn)R作RE⊥KQ于點(diǎn)E,在Rt△OPH中,PH=AB=1,OP=2,

∴∠POH=30°,

∴α=60°﹣30°=30°,

∵AD∥BC,

∴∠RPO=∠POH=30°,

∴∠RKQ=2×30°=60°,

∴S扇形KRQ= = ,

在Rt△RKE中,RE=RKsin60°=

∴SPRK= RE= ,∴S陰影= +

拓展:如圖5,

∵∠OAN=∠MBN=90°,∠ANO=∠BNM,

∴△AON∽△BMN,

,即 ,

∴BN= ,

如圖4,

當(dāng)點(diǎn)Q落在BC上時(shí),x取最大值,作QF⊥AD于點(diǎn)F,BQ=AF= ﹣AO=2 ﹣1,

∴x的取值范圍是0<x≤2 ﹣1;

探究:半圓K與矩形ABCD的邊相切,分三種情況;

①如圖5,半圓K與BC相切于點(diǎn)T,設(shè)直線KT與AD,OQ的初始位置所在的直線分別交于點(diǎn)S,O′,

則∠KSO=∠KTB=90°,

作KG⊥OO′于G,在Rt△OSK中,

OS= =2,

在Rt△OSO′中,SO′=OStan60°=2 ,KO′=2 ,

在Rt△KGO′中,∠O′=30°,

∴KG= KO′= ,

∴在Rt△OGK中,sinα= = = ,

②當(dāng)半圓K與AD相切于T,如圖6,

同理可得sinα= = = = ;

③當(dāng)半圓K與CD切線時(shí),點(diǎn)Q與點(diǎn)D重合,且為切點(diǎn),

∴α=60°,

∴sinα=sin60 ,

綜上所述sinα的值為:


【解析】解:發(fā)現(xiàn):(1)在,
當(dāng)OQ過點(diǎn)B時(shí),在Rt△OAB中,AO=AB,
∴∠DOQ=∠ABO=45°,
∴α=60°﹣45°=15°;
(1)在,當(dāng)OQ過點(diǎn)B時(shí),在Rt△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如圖2,連接AP,由OA+AP≥OP,當(dāng)OP過點(diǎn)A,即α=60°時(shí),等號(hào)成立,于是有AP≥OP﹣OA=2﹣1=1,當(dāng)α=60°時(shí),P、A之間的距離最小,即可求得結(jié)果(3)如圖2,設(shè)半圓K與PC交點(diǎn)為R,連接RK,過點(diǎn)P作PH⊥AD于點(diǎn)H,過點(diǎn)R作RE⊥KQ于點(diǎn)E,在Rt△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到結(jié)果;
拓展:如圖5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN= ,如圖4,當(dāng)點(diǎn)Q落在BC上時(shí),x取最大值,作QF⊥AD于點(diǎn)F,BQ=AF= ﹣AO=2 ﹣1,求出x的取值范圍是0<x≤2 ﹣1;
探究:半圓K與矩形ABCD的邊相切,分三種情況;
①如圖5,半圓K與BC相切于點(diǎn)T,設(shè)直線KT與AD,OQ的初始位置所在的直線分別交于點(diǎn)S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在Rt△OSK中,求出OS= =2,在Rt△OSO′中,SO′=OStan60°=2 ,KO′=2 在Rt△KGO′中,∠O′=30°,求得KG= KO′= ,在Rt△OGK中,求得結(jié)果;②當(dāng)半圓K與AD相切于T,圖6,同理可得sinα的值③當(dāng)半圓K與CD切線時(shí),點(diǎn)Q與點(diǎn)D重合,且為切點(diǎn),得到α=60°于是結(jié)論可求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的布袋里裝有3個(gè)球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外其余都相同.
(1)摸出1個(gè)球,記下顏色后放回,并攪勻,再摸出1個(gè)球,求兩次摸出的球恰好顏色不同的概率(請(qǐng)用“畫樹狀圖”或“列表”等方法寫出分析過程);
(2)現(xiàn)再將n個(gè)白球放入布袋,攪勻后,使摸出1個(gè)球是白球的概率為 ,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機(jī)可以計(jì)算行走的步數(shù)與相應(yīng)的能量消耗.對(duì)比手機(jī)數(shù)據(jù)發(fā)現(xiàn)小明步行12 000步與小紅步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步數(shù)比小紅多10步,求小紅每消耗1千卡能量需要行走多少步?

【答案】小紅每消耗1千卡能量需要行走30步.

【解析】分析:設(shè)小紅每消耗1千卡能量需要行走x步,則小明每消耗1千卡能量需要行走(x+10)步,根據(jù)數(shù)量關(guān)系消耗能量千卡數(shù)=行走步數(shù)÷每消耗1千卡能量需要行走步數(shù)結(jié)合小明步行12000步與小紅步行9000步消耗的能量相同,即可得出關(guān)于x的分式方程,解之后經(jīng)檢驗(yàn)即可得出結(jié)論.

詳解:設(shè)小紅每消耗1千卡能量需要行走x步,則小明每消耗1千卡能量需要行走(x+10)步,
根據(jù)題意,得

,
解得x=30.
經(jīng)檢驗(yàn):x=30是原方程的解.
答:小紅每消耗1千卡能量需要行走30步.

點(diǎn)睛:本題考查了分式方程的應(yīng)用,根據(jù)數(shù)量關(guān)系消耗能量千卡數(shù)=行走步數(shù)÷每消耗1千卡能量需要行走步數(shù)列出關(guān)于x的分式方程是解題的關(guān)鍵.

型】解答
結(jié)束】
25

【題目】如圖,在ABC中,ADBC邊上的中線,EAD的中點(diǎn),過點(diǎn)ABC的平行線交BE的延長(zhǎng)線于F,連接CF.

(1)求證:四邊形ADCF是平行四邊形;

(2)當(dāng)ABC滿足什么條件時(shí),四邊形ADCF為正方形,請(qǐng)你添加適當(dāng)?shù)臈l件并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)△ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)

(2)

(3)

(4)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點(diǎn)A,B與正方形EFGH的頂點(diǎn)G,H同在一段拋物線上,且拋物線的頂點(diǎn)同時(shí)落在CD和y軸上,正方形邊AB與EF同時(shí)落在x軸上,若正方形ABCD的邊長(zhǎng)為4,則正方形EFGH的邊長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MNAD相交于點(diǎn)M,與BD相交于點(diǎn)N,連接BM,DN

1)求證:四邊形BMDN是菱形;

2)若AB=4,AD=8,求MD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD與正方形AEFG的邊AB,AE(AB<AE)在一條直線上,正方形AEFG以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個(gè)正方形只有點(diǎn)A重合,其它頂點(diǎn)均不重合,連接BE,DG.

(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時(shí),求證:BE=DG;

(2)如圖3,如果α=45°,AB=2,AE=3
①求BE的長(zhǎng);②求點(diǎn)A到BE的距離;

(3)當(dāng)點(diǎn)C落在直線BE上時(shí),連接FC,直接寫出∠FCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明遇到下面的問題:求代數(shù)式的最小值并寫出取到最小值時(shí)的x值.經(jīng)過觀察式子結(jié)構(gòu)特征,小明聯(lián)想到可以用解一元二次方程中的配方法來解決問題,具體分析過程如下:

,所以,當(dāng)x=1 時(shí),代數(shù)式有最小值是-4.

(1)請(qǐng)你用上面小明思考問題的方法解決下面問題.

的最小值是_______;②求的最小值

(2)小明受到上面問題的啟發(fā),自己設(shè)計(jì)了一個(gè)問題,并給出解題過程及結(jié)論如下:

問題:當(dāng)x為實(shí)數(shù)時(shí),求的最小值.

解:∴原式有最小值是5.

請(qǐng)你判斷小明的結(jié)論是否正確,并簡(jiǎn)要說明理由.

判斷:__________,理由:____________________________________________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案