【題目】如圖,正方形ABCD的頂點A,B與正方形EFGH的頂點G,H同在一段拋物線上,且拋物線的頂點同時落在CD和y軸上,正方形邊AB與EF同時落在x軸上,若正方形ABCD的邊長為4,則正方形EFGH的邊長為
【答案】2 ﹣2
【解析】解:∵正方形ABCD邊長為4,
∴頂點坐標(biāo)為:(0,4),B(2,0),
設(shè)拋物線解析式為:y=ax2+4,
將B點代入得,0=4a+4,
解得a=﹣1,
∴拋物線解析式為:y=﹣x2+4
設(shè)G點坐標(biāo)為:(m,﹣m2+4),
則2m=﹣m2+4,
整理的:m2+2m﹣4=0,
解得:m1=﹣1+ ,a2=﹣1﹣ (不合題意舍去),
∴正方形EFGH的邊長FG=2m=2 ﹣2.
所以答案是:2 ﹣2.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在平面直角坐標(biāo)系中,點A(3,0),B(0,﹣4),C是x軸上一動點,過C作CD∥AB交y軸于點D.
(1)的值是 .
(2)若以A,B,C,D為頂點的四邊形的面積等于54,求點C的坐標(biāo).
(3)將△AOB繞點A按順時針方向旋轉(zhuǎn)90°得到△AO′B′,設(shè)D的坐標(biāo)為(0,n),當(dāng)點D落在△AO′B′內(nèi)部(包括邊界)時,求n的取值范圍.(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)為備戰(zhàn)省運會,在校運動隊的學(xué)生中進行了全能選手的選拔,并將參加選拔學(xué)生的綜合成績分成四組,繪成了如下尚不完整的統(tǒng)計圖表.
組別 | 成績 | 組中值 | 頻數(shù) |
第一組 | 90≤x<100 | 95 | 4 |
第二組 | 80≤x<90 | 85 | m |
第三組 | 70≤x<80 | 75 | n |
第四組 | 60≤x<70 | 65 | 21 |
根據(jù)圖表信息,回答下列問題:
(1)參加活動選拔的學(xué)生共有人;表中m= , n=;
(2)若將各組的組中值視為該組的平均值,請你估算參加選拔學(xué)生的平均成績;
(3)將第一組中的4名學(xué)生記為A、B、C、D,由于這4名學(xué)生的體育綜合水平相差不大,現(xiàn)決定隨機挑選其中兩名學(xué)生代表學(xué)校參賽,試通過畫樹形圖或列表的方法求恰好選中A和B的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,不正確的是( )
A. 一個數(shù)與它的倒數(shù)的積是1
B. 一個數(shù)的絕對值與它的相反數(shù)的商是
C. 兩個數(shù)的商為,這兩個數(shù)互為相反數(shù)
D. 兩個數(shù)的積為1,這兩個數(shù)互為倒數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖1擺放,分別延長DA和QP交于點O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點O按逆時針方向開始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).
發(fā)現(xiàn):
(1)當(dāng)α=0°,即初始位置時,點P直線AB上.(填“在”或“不在”)求當(dāng)α是多少時,OQ經(jīng)過點B.
(2)在OQ旋轉(zhuǎn)過程中,簡要說明α是多少時,點P,A間的距離最小?并指出這個最小值;
(3)如圖2,當(dāng)點P恰好落在BC邊上時,求a及S陰影
拓展:
如圖3,當(dāng)線段OQ與CB邊交于點M,與BA邊交于點N時,設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長,并求x的取值范圍.
探究:當(dāng)半圓K與矩形ABCD的邊相切時,求sinα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,E、F分別是AO、CO的中點,連接BE、DE、DF、BF,
(1)求證:四邊形EBFD是平行四邊形.
(2)求證:當(dāng)AC=2BD時,四邊形EBFD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有4個質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有數(shù)字3,4,5,x.甲、乙兩人每次同時從袋中各隨機摸出1個球,并計算摸出的這2個小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進行重復(fù)試驗.實驗數(shù)據(jù)如下表:
摸球總次數(shù) | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和為8”出現(xiàn)的頻數(shù) | 2 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和為8”出現(xiàn)的頻率 | 0.20 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列問題:
(1)如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近.估計出現(xiàn)“和為8”的概率是;
(2)當(dāng)x=7時,請用列表法或樹狀圖法計算“和為8”的概率;并判斷x=7是否可能.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了綠化校園,我校決定修建一塊長方形草坪,長米,寬米,并在草坪上修建如圖所示的十字路,設(shè)小路的寬為米.
用含的式子分別表示出草坪的面積、小路的面積;
寫出中多項式的項、次數(shù),并說明是幾次幾項式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時間與路程的關(guān)系示意圖.
根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是多少米?
(2)在整個上學(xué)的途中哪個時間段小明騎車速度最快,最快的速度是多少米/分?
(3)小明在書店停留了多少分鐘?
(4)本次上學(xué)途中,小明一共行駛了多少米?一共用了多少分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com