【題目】如圖,拋物線y=ax2+bx(a≠0) x軸正半軸于點(diǎn)A,直線y=2x 經(jīng)過(guò)拋物線的頂點(diǎn)M.已知該拋物線的對(duì)稱軸為直線x=2,交x軸于點(diǎn)B.

(1)求a,b的值;

(2)P是第一象限內(nèi)拋物線上的一點(diǎn),且在對(duì)稱軸的右側(cè),連接OP,BP.設(shè)點(diǎn)P的橫坐標(biāo)為m ,OBP的面積為S,.求K關(guān)于m 的函數(shù)表達(dá)式及K的范圍.

【答案】(1)a=-1;b=4;(2)K=-m+4,0<K<2

【解析】

分析: (1)將x=2代入直線y=2x得出對(duì)應(yīng)的函數(shù)值,從而得出M點(diǎn)的坐標(biāo),將M點(diǎn)的坐標(biāo)代入拋物線 y = a x 2 + b x ,再根據(jù)拋物線的對(duì)稱軸為直線 x = 2,得出關(guān)于a,b的二元一次方程組,求解得出a,b的值;

(2)如圖,過(guò)點(diǎn)PPHx軸于點(diǎn)H,根據(jù)P點(diǎn)的橫坐標(biāo)及點(diǎn)P在拋物線上從而得出PH的值,根據(jù)B點(diǎn)的坐標(biāo)得出OB的長(zhǎng),從而根據(jù)三角形的面積公式得出S=-m2+4m,再根據(jù),得出k=-m+4,由題意得A(4,0),M(2,4),根據(jù)P是第一象限內(nèi)拋物線上的一點(diǎn),且在對(duì)稱軸的右側(cè),從而得出2<m<4,根據(jù)一次函數(shù)的性質(zhì)知K隨著m的增大而減小,從而得出答案0<K<2.

詳解:

(1)解 ;x=2代入y=2xy=4

M(2,4)

由題意得

.

(2)解 :如圖,過(guò)點(diǎn)PPHx軸于點(diǎn)H

∵點(diǎn)P的橫坐標(biāo)為m,拋物線的函數(shù)表達(dá)式為y=-x2+4x

PH=-m2+4m

B(2,0),

OB=2

S= OB·PH=×2×(-m2+4m)=-m2+4m

K==-m+4

由題意得A(4,0)

M(2,4)

2<m<4

K隨著m的增大而減小,所以0<K<2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上AB兩點(diǎn)所表示的數(shù)分別為-2和8.

(1)求線段AB的長(zhǎng);

(2)若P為射線BA上的一點(diǎn)(點(diǎn)P不與AB兩點(diǎn)重合,MPA的中點(diǎn),NPB的中點(diǎn),當(dāng)點(diǎn)P在射線BA上運(yùn)動(dòng)時(shí);MN的長(zhǎng)度是否發(fā)生改變?若不變,請(qǐng)你畫(huà)出圖形,并求出線段MN的長(zhǎng);若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,折疊長(zhǎng)方形(四個(gè)角都是直角)的一邊AD使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=DC=8cm,AD=BC=10cm,求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)一個(gè)不透明的盒子中裝有 2 枚黑色的棋子和 1 枚白色的棋子,每枚棋子除了顏色外其余均相同.從盒中隨機(jī)摸出一枚棋子,記下顏色后放回并攪勻,再?gòu)暮凶又须S機(jī)摸出一枚棋子,記下顏色,用畫(huà)樹(shù)狀圖(或列表)的方法,求兩次摸出的棋子顏色不同的概率.

2)如圖,已知 ,,于點(diǎn)O,連接,求證:AO平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按要求畫(huà)圖,并解答問(wèn)題

1)如圖,取BC邊的中點(diǎn)D,畫(huà)射線AD;

2)分別過(guò)點(diǎn)BC畫(huà)BEAD于點(diǎn)E,CFAD于點(diǎn)F;

3BECF的位置關(guān)系是   ;通過(guò)度量猜想BECF的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知P為銳角∠MAN內(nèi)部一點(diǎn),過(guò)點(diǎn)PPBAM于點(diǎn)B,PCAN于點(diǎn)C,以PB為直徑作⊙O,交直線CP于點(diǎn)D,連接AP,BD,AP交⊙O于點(diǎn)E.

(1)求證:∠BPD=BAC.

(2)連接EB,ED,當(dāng)tanMAN=2,AB=2時(shí),在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中.

①若∠BDE=45°,求PD的長(zhǎng);

②若BED為等腰三角形,求所有滿足條件的BD的長(zhǎng)

(3)連接OC,EC,OCAP于點(diǎn)F,當(dāng)tanMAN=1,OC//BE時(shí),記OFP的面積為S1,CFE的面積為S2,請(qǐng)寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖所示,有以下結(jié)論:①abc>0;②abc>1;③abc>0;④4a-2bc<1;⑤b+2a=0. 其中所有正確的結(jié)論是______.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,等腰直角三角形的斜邊的端點(diǎn)分別在軸和軸上,且點(diǎn),,直角頂點(diǎn)在第一象限,則點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:某段樓梯共有10個(gè)臺(tái)階,如果某同學(xué)在上臺(tái)階時(shí),可以一步1個(gè)臺(tái)階,也可以一步2個(gè)臺(tái)階.那么該同學(xué)從該段樓梯底部上到頂部共有多少種不同的走法?

問(wèn)題探究:

為解決上述實(shí)際問(wèn)題,我們先建立如下數(shù)學(xué)模型:

如圖①,用若干個(gè)邊長(zhǎng)都為1的正方形(記為1×1矩形)和若干個(gè)邊長(zhǎng)分別為12的矩形(記為1×2矩形),要拼成一個(gè)如圖②中邊長(zhǎng)分別為1和n的矩形(記為矩形),有多少種不同的拼法?(設(shè)表示不同拼法的個(gè)數(shù))

為解決上述數(shù)學(xué)模型問(wèn)題,我們采取的策略和方法是:一般問(wèn)題特殊化.

探究一:先從最特殊的情形入手,即要拼成一個(gè)1×1矩形,有多少種不同拼法?

顯然,只有1種拼法,如圖③,即=1種.

探究二:要拼成一個(gè)1×2矩形,有多少種不同拼法?

可以看出,有2種拼法,如圖④,即=2種.

探究三:要拼成一個(gè)1×3矩形,有多少種不同拼法?

拼圖方法可分為兩類:一類是在圖④這21×2矩形上方,各拼上一個(gè)1×1矩形,即這類拼法共有=2種;另一類是在圖③這1種1×1矩形上方拼上一個(gè)1×2矩形,即這類拼法有=1種.如圖⑤,即=+= 2+1=3(種).

探究四:仿照上述探究過(guò)程,要拼成一個(gè)1×4矩形,有多少種不同拼法?請(qǐng)畫(huà)示意圖說(shuō)明并求出結(jié)果.

探究五:要拼成一個(gè)1×5矩形,仿照上述探究過(guò)程,得出=     種不同拼法.

(直接寫(xiě)出結(jié)果,不需畫(huà)圖).

問(wèn)題解決:請(qǐng)你根據(jù)上述中的數(shù)學(xué)模型,解答問(wèn)題提出中的實(shí)際問(wèn)題.

(寫(xiě)出解答過(guò)程,不需畫(huà)圖).

查看答案和解析>>

同步練習(xí)冊(cè)答案