【題目】直線y=﹣x+4與x軸,y軸分別相交于A、B兩點(diǎn),把△AOB繞點(diǎn)A旋轉(zhuǎn)90°后得到△AO′B′,則點(diǎn)B′的坐標(biāo)是_____.
【答案】(7,3)或(﹣1,3)
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)﹣﹣旋轉(zhuǎn)不改變圖形的形狀和大小解答.
直線y=﹣x+4與x軸、y軸分別交于A(3,0)、B(0,4)兩點(diǎn),
由圖易知點(diǎn)B′的縱坐標(biāo)為O′A=OA=3,O′B′=OB=4.
如圖:
①當(dāng)△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AO′B′時(shí),
橫坐標(biāo)為OA+O′B′=OA+OB=7.
則點(diǎn)B′的坐標(biāo)是(7,3).
②當(dāng)△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后得到△AO′B′時(shí),
橫坐標(biāo)為O′B′﹣OA=OB﹣OA=1.
則點(diǎn)B′的坐標(biāo)是(﹣1,3).
故答案為:(7,3)或(﹣1,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果公司新購(gòu)進(jìn)10000千克柑橘,每千克柑橘的成本為9元. 柑橘在運(yùn)輸、存儲(chǔ)過(guò)程中會(huì)有損壞,銷(xiāo)售人員從所有的柑橘中隨機(jī)抽取若干柑橘,進(jìn)行“柑橘損壞率”統(tǒng)計(jì),并把獲得的數(shù)據(jù)記錄如下:
柑橘總重量n/千克 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
損壞柑橘重量m/千克 | 5.50 | 10.50 | 15.15 | 19.42 | 24.25 | 30.93 | 35.32 | 39.24 | 44.57 | 51.54 |
柑橘損壞的頻率 | 0.110 | 0.105 | 0.101 | 0.097 | 0.097 | 0.103 | 0.101 | 0.098 | 0.099 | 0.103 |
根據(jù)以上數(shù)據(jù),估計(jì)柑橘損壞的概率為 (結(jié)果保留小數(shù)點(diǎn)后一位);由此可知,去掉損壞的柑橘后,水果公司為了不虧本,完好柑橘每千克的售價(jià)至少為________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,則下列選項(xiàng)中,滿(mǎn)足A、B、C三點(diǎn)位置關(guān)系的數(shù)軸為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題引入)
如圖(1),在中,,,過(guò)作則交延長(zhǎng)線于點(diǎn),則易得
(直接應(yīng)用)
如圖,已知等邊的邊長(zhǎng)為,點(diǎn), 分別在邊, 上, , 為中點(diǎn),為當(dāng)上一動(dòng)點(diǎn),當(dāng)在何處時(shí),與相似,求的值.
(拓展應(yīng)用)
已知在平行四邊形中,,,,,,求長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。
定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心。
舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心。
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=AB,求∠APB的度數(shù)。
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的弦,AB=4,過(guò)圓心O的直線垂直AB于點(diǎn)D,交⊙O于點(diǎn)C和點(diǎn)E,連接AC、BC、OB,cos∠ACB=,延長(zhǎng)OE到點(diǎn)F,使EF=2OE.
(1)求⊙O的半徑;
(2)求證:BF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左、右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開(kāi)式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開(kāi)式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開(kāi)式中的系數(shù)等.
(1)(a+b)n展開(kāi)式中項(xiàng)數(shù)共有 項(xiàng).
(2)寫(xiě)出(a+b)5的展開(kāi)式:(a+b)5= .
(3)利用上面的規(guī)律計(jì)算:25﹣5×24+10×23﹣10×22+5×2﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=2x2+bx﹣1(b為常數(shù)).
(1)若拋物線經(jīng)過(guò)點(diǎn)(1,2b),求b的值;
(2)求證:無(wú)論b取何值,二次函數(shù)y=2x2+bx﹣1圖象與x軸必有兩個(gè)交點(diǎn);
(3)若平行于x軸的直線與該二次函數(shù)的圖象交于點(diǎn)A,B,且點(diǎn)A,B的橫坐標(biāo)之和大于1,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB的中線,E為邊BC的中點(diǎn),連接DE,過(guò)點(diǎn)E作EF∥CD交AC的延長(zhǎng)線于點(diǎn)F.若AB=13,BC=12,則四邊形CDEF的周長(zhǎng)為________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com