【題目】某商場(chǎng)銷售,兩種商品,售出2件種商品和3件種商品所得利潤(rùn)為700元;售出3件種商品和5件種商品所得利潤(rùn)為1100元.
(1)求每件種商品和每件種商品售出后所得利潤(rùn)分別為多少元;
(2)由于需求量大,,兩種商品很快售完,商場(chǎng)決定再一次購(gòu)進(jìn),兩種商品共34件,如果將這34件商品全部售完后所得利潤(rùn)不低于4000元,那么此商場(chǎng)至少需購(gòu)進(jìn)多少件種商品.
【答案】(1)每件種商品售出后所得的利潤(rùn)為200元,每件種商品售出后所得利潤(rùn)為100元;
(2)商場(chǎng)至少需購(gòu)進(jìn)6件種商品
【解析】
(1)根據(jù)題意列出二元一次方程組求解即可;
(2)根據(jù)題意找到不等關(guān)系:總利潤(rùn)A+總利潤(rùn)B≥4000,列出不等式即可.
解:(1)設(shè)每件種商品售出后所得利潤(rùn)為元,每件種商品售出后所得利潤(rùn)為元,根據(jù)題意得:,
解得:,
答:每件種商品售出后所得的利潤(rùn)為200元,每件種商品售出后所得利潤(rùn)為100元;
(2)設(shè)購(gòu)進(jìn)種商品件,則購(gòu)進(jìn)種商品件,
根據(jù)題意得:,
解得:,
答:商場(chǎng)至少需購(gòu)進(jìn)6件種商品.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)A(1,0),B(3,0),C(0,6)三點(diǎn).
(1)求拋物線的解析式.
(2)拋物線的頂點(diǎn)M與對(duì)稱軸l上的點(diǎn)N關(guān)于x軸對(duì)稱,直線AN交拋物線于點(diǎn)D,直線BE交AD于點(diǎn)E,若直線BE將△ABD的面積分為1:2兩部分,求點(diǎn)E的坐標(biāo).
(3)P為拋物線上的一動(dòng)點(diǎn),Q為對(duì)稱軸上動(dòng)點(diǎn),拋物線上是否存在一點(diǎn)P,使A、D、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在菱形ABCD中,,點(diǎn)E,F分別是AC,AB上的點(diǎn),且,猜想:
①的值是_______;
②直線DE與直線CF所成的角中較小的角的度數(shù)是_______.
(2)類比探究:如圖2,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過(guò)程中,(1)中結(jié)論是否成立,就圖2的情形說(shuō)明理由.
(3)拓展延伸:
在繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,當(dāng)三點(diǎn)共線時(shí),請(qǐng)直接寫(xiě)出CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情無(wú)情人有情,愛(ài)心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,某班學(xué)生積極參加獻(xiàn)愛(ài)心活動(dòng),該班50名學(xué)生的捐款統(tǒng)計(jì)情況如下表:
金額/元 | 5 | 10 | 20 | 50 | 100 |
人數(shù) | 6 | 17 | 14 | 8 | 5 |
則他們捐款金額的眾數(shù)和中位數(shù)分別是( )
A.100,10B.10,20C.17,10D.17,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)(k>0)的圖象相交于A,B兩點(diǎn),與x軸相交于點(diǎn)C(4,0),且點(diǎn)B(3,n),連接OB.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△BOC的面積;
(3)將直線AB向下平移,若平移后的直線與反比例函數(shù)的圖象只有一個(gè)交點(diǎn),試說(shuō)明直線AB向下平移了幾個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為一個(gè)矩形紙片,,.動(dòng)點(diǎn)自點(diǎn)出發(fā)沿方向運(yùn)動(dòng)至點(diǎn)后停止,以直線為軸翻折,點(diǎn)落在點(diǎn)的位置.設(shè),與原紙片重疊部分的面積為.
(1)當(dāng)為何值時(shí),直線過(guò)點(diǎn);
(2)當(dāng)為何值時(shí),直線過(guò)的中點(diǎn);
(3)求出與的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)設(shè)了:籃球,:毯球,:跳繩,:健美操四種體育活動(dòng),為了解學(xué)生對(duì)這四種體育活動(dòng)的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生,進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的同學(xué)必須選擇而且只能在種體育活動(dòng)中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫(huà)完整)
(1)這次調(diào)查中,一共調(diào)查了 名學(xué)生:
(2)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖:
(3)若由名最喜歡毯球運(yùn)動(dòng)的學(xué)生,名最喜歡跳繩運(yùn)動(dòng)的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng),欲從中選出人擔(dān)任組長(zhǎng)(不分正副),求人均是最喜歡鍵球運(yùn)動(dòng)的學(xué)生的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+6x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=x﹣5經(jīng)過(guò)點(diǎn)B,C.
(1)求拋物線的解析式;
(2)若點(diǎn)N為拋物線上動(dòng)點(diǎn),當(dāng)∠NBA=∠OAC時(shí),求點(diǎn)N的坐標(biāo),
(3)過(guò)點(diǎn)A的直線交直線BC于點(diǎn)M,當(dāng)AM⊥BC時(shí),過(guò)拋物線上一動(dòng)點(diǎn)P(不與點(diǎn)B,C重合),作直線AM的平行線交直線BC于點(diǎn)Q,若以點(diǎn)A,M,Q,P為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀理解)設(shè)點(diǎn)P在矩形ABCD內(nèi)部,當(dāng)點(diǎn)P到矩形的一條邊的兩個(gè)端點(diǎn)距離相等時(shí),稱點(diǎn)P為該邊的“和諧點(diǎn)”.例如:如圖1,矩形ABCD中,若PA=PD,則稱P為邊AD的“和諧點(diǎn)”.
(解題運(yùn)用)已知,點(diǎn)P在矩形ABCD內(nèi)部,且AB=10,BC=6.
(1)設(shè)P是邊AD的“和諧點(diǎn)”,則P 邊BC的“和諧點(diǎn)”(填“是”或“不是”);
(2)若P是邊BC的“和諧點(diǎn)”,連接PA,PB,當(dāng)△PAB是直角三角形時(shí),求PA的值;
(3)如圖2,若P是邊AD的“和諧點(diǎn)”,連接PA,PB,PD,求tan∠PAB· tan∠PBA的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com