【題目】(7分)某市“藝術(shù)節(jié)”期間,小明、小亮都想去觀看茶藝表演,但是只有一張茶藝表演門票,他們決定采用抽卡片的辦法確定誰去.規(guī)則如下:
將正面分別標(biāo)有數(shù)字1、2、3、4的四張卡片(除數(shù)字外其余都相同)洗勻后,背面朝上放置在桌面上,隨機抽出一張記下數(shù)字后放回;重新洗勻后背面朝上放置在桌面上,再隨機抽出一張記下數(shù)字.如果兩個數(shù)字之和為奇數(shù),則小明去;如果兩個數(shù)字之和為偶數(shù),則小亮去.
(1)請用列表或畫樹狀圖的方法表示抽出的兩張卡片上的數(shù)字之和的所有可能出現(xiàn)的結(jié)果;
(2)你認(rèn)為這個規(guī)則公平嗎?請說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形 ABCD中,AB 6cm ,BC 12cm ,B 30,點P 在 BC 上由點B向點C 出發(fā),速度為每秒2cm;點Q 在邊AD上,同時由點 D 向點 A 運動,速度為每秒1cm ,當(dāng)點 P 運動到點C時,P 、Q 同時停止運動,連接 PQ,設(shè)運動時間為t秒.
(1)當(dāng)t為何值時四邊形 ABPQ 為平行四邊形?
(2)當(dāng)t為何值時,四邊形 ABPQ 的面積是四邊形 ABCD 的面積的四分之三?
(3)連接 AP ,是否存在某一時刻t,使ABP 為等腰三角形?并求出此刻t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學(xué)小組為了測量假山的高度DE,在公園找了一水平地面,在A處測得建筑物點D(即山頂)的仰角為35°,沿水平方向前進(jìn)20米到達(dá)B點,測得建筑物頂部C點的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于點、,且,與軸的正半軸的交點在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)是( )個.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC內(nèi)接于O,AD⊥BC.垂足為D.
(1)如圖1,若,BD=DC,求∠B的度數(shù).
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點F,過點B作BG∥AD交⊙O于點G,在AB邊上取一點H,使得AH=BG;
①連接CG,試探究∠ABC,∠ACG的數(shù)量關(guān)系,并給予證明.
②求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角α=30°,從平臺底部向樹的方向水平前進(jìn)3米到達(dá)點E,在點E處測得樹頂A點的仰角β=60°,求樹高AB(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=4,以A為圓心,3為半徑作圓.試判斷:
①點C與⊙A的位置關(guān)系;②點B與⊙A的位置關(guān)系;③AB中的D點與⊙A的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有4張正面分別標(biāo)有數(shù)字的不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數(shù)字記為,另有一個被均勻分成4份的轉(zhuǎn)盤,上面分別標(biāo)有數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤,指針?biāo)傅臄?shù)字記為(若指針指在分割線上則重新轉(zhuǎn)一次),則點落在拋物線與軸所圍成的區(qū)域內(nèi)(不含邊界)的概率是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P為所在平面內(nèi)一點,連接PA,PB,PC,在,和中,若存在一個三角形與相似全等除外那么就稱P為的共相似點”根據(jù)“共相似點“是否落在三角形的內(nèi)部,邊上或外部,可將其分為內(nèi)共相似點”,“邊共相似點或“外共相似點”.
據(jù)定義可知,等邊三角形______填“存在”或“不存在共相似點
(探究)用邊共相似點探究三角形的形狀
如圖1,若的一個邊共相似點P與其對角項點B的連線,將分割成的兩個三角形恰與原三角形均相似,試判斷的形狀,并說明理由.
(探究2)用內(nèi)共相似點探究三角形的內(nèi)角關(guān)系
如圖2,在中,,高線CD與角平分線BE交于點P,若P是的一個內(nèi)共相似點試說明點E是的邊共相似點,并直接寫出的度數(shù);
(探究)探究直角三角形共相似點的個數(shù)
如圖3,在中,,,,若與相以,則滿足條件的P點共有______個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com