【題目】如圖,在平行四邊形ABCD中,EBC邊上一點,且AB=AE

1)求證:△ABC≌△EAD

2)若AE平分∠DAB,∠EAC=25°,求∠AED的度數(shù).

【答案】見解析

【解析】試題分析:從題中可知:(1△ABC△EAD中已經(jīng)有一條邊和一個角分別相等,根據(jù)平行的性質(zhì)和等邊對等角得出∠B=∠DAE即可證明.

2)根據(jù)全等三角形的性質(zhì),利用平行四邊形的性質(zhì)求解即可.

1)證明:四邊形ABCD為平行四邊形,

∴AD∥BC,AD=BC

∴∠DAE=∠AEB

∵AB=AE,

∴∠AEB=∠B

∴∠B=∠DAE

△ABC△AED中,

∴△ABC≌△EAD

2)解:∵AE平分∠DAB(已知),

∴∠DAE=∠BAE

∵∠DAE=∠AEB,

∴∠BAE=∠AEB=∠B

∴△ABE為等邊三角形.

∴∠BAE=60°

∵∠EAC=25°,

∴∠BAC=85°

∵△ABC≌△EAD,

∴∠AED=∠BAC=85°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.

(1)在方程①3x-1=0,② ③x-(3x+1)=-5 中,不等組 的關(guān)聯(lián)方程是________

(2)若不等式組 的一個關(guān)聯(lián)方程的根是整數(shù), 則這個關(guān)聯(lián)方程可以是________(寫出一個即可)

(3)若方程 3-x=2x,3+x= 都是關(guān)于 x 的不等式組 的關(guān)聯(lián)方程,直接寫出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分EOC

(1)若EOC=70°,求BOD的度數(shù);

(2)若EOCEOD=2:3,求BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課題組為了解全市八年級學(xué)生對數(shù)學(xué)知識的掌握情況,在一次數(shù)學(xué)檢測中,從全市24000名八年級考生中隨機抽取部分學(xué)生的數(shù)學(xué)成績進行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖表:

分?jǐn)?shù)段

頻數(shù)

頻率

<60

20

0.10

60<70

28

0.14

70<80

54

0.27

80<90

0.20

90<100

24

0.12

100<110

18

110120

16

0.08

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)表中所表示的數(shù)分別為:= ,= ;

(2)請在圖中,補全頻數(shù)分布直方圖;

(3)如果把成績在90分以上(含90分)定為優(yōu)秀,那么該市24000名八年級考生數(shù)學(xué)成績?yōu)閮?yōu)秀的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知鈍角三角形ABC,將△ABC繞點A按逆時針方向旋轉(zhuǎn)110°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為(
A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1)9+(﹣7)+10+(﹣3)+(﹣9)

(2)12+(﹣14)+6+(﹣7)

(3)﹣

(4)﹣4.2+5.7+(﹣8.7)+4.2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題:(每小題5分,共30分)

1

2

(3)

(4)

(5)解方程:

(6)解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連結(jié)BD并延長交EG于點T,交FG于點P,則GT=(
A.
B.2
C.2
D.1

查看答案和解析>>

同步練習(xí)冊答案