【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求證:此方程總有兩個(gè)實(shí)數(shù)根;

(2)若此方程有一個(gè)根大于0且小于1,求k的取值范圍.

【答案】(1)證明見(jiàn)解析;(2)1<k<2.

【解析】

(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,求得判別式恒成立,因此得證;

(2)利用求根公式求根,根據(jù)有一個(gè)跟大于0且小于1,列出關(guān)于的不等式組,解之即可.

(1)證明:△=b2-4ac=[-(k+1)]2-4×(2k-2)=k2-6k+9=(k-3)2,

∵(k-3)2≥0,即△≥0,

∴此方程總有兩個(gè)實(shí)數(shù)根,

解得x1=k-1,x2=2,

∵此方程有一個(gè)根大于0且小于1,

而x2>1,

∴0<x1<1,

即0<k-1<1.

∴1<k<2,

即k的取值范圍為:1<k<2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點(diǎn)D,E,BD=CD,過(guò)點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求 的長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD對(duì)角線交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.

(1)試判斷四邊形AEBO的形狀,并說(shuō)明你的理由;

(2)求證:EO=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.

下面有三個(gè)推斷:

①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)釘尖向上的概率是0.618;

③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

如圖,在平面直角坐標(biāo)系中,若已知點(diǎn)A(xA,yA)和點(diǎn)C(xC,yC),點(diǎn)M為線段AC的中點(diǎn),利用三角形全等的知識(shí),有△AMP≌△CMQ,則有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,從而有,即中點(diǎn)M的坐標(biāo)為(,).

基本知識(shí):

(1)如圖,若A、C點(diǎn)的坐標(biāo)分別A(﹣1,3)、C(3,﹣1),求AC中點(diǎn)M的坐標(biāo);

方法提煉:

(2)如圖,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,5)、(﹣2,2)、(3,3),求點(diǎn)D的坐標(biāo);

(3)如圖,點(diǎn)A是反比例函數(shù)y=(x>0)上的動(dòng)點(diǎn),過(guò)點(diǎn)A作ABx軸,ACy軸,分別交函數(shù)y(x>0)的圖象于點(diǎn)B、C,點(diǎn)D是直線y=2x上的動(dòng)點(diǎn),請(qǐng)?zhí)剿髟邳c(diǎn)A運(yùn)動(dòng)過(guò)程中,以A、B、C、D為頂點(diǎn)的四邊形能否為平行四邊形,若能,求出此時(shí)點(diǎn)A的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著。書(shū)中有下列問(wèn)題“今有勾八步,股十五步。問(wèn)勾中容圓徑幾何?”其意思為今有直角三角形,勾(短直角邊)長(zhǎng)為8步,股(長(zhǎng)直角邊)長(zhǎng)為15步,問(wèn)該直角三角形能容納的圓形(內(nèi)切圓)直徑是步。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,BE平分∠ABC交CD邊于點(diǎn)E.點(diǎn)F在BC邊上,且FE⊥AE.

(1)如圖1,①∠BEC=_________°;

②在圖1已有的三角形中,找到一對(duì)全等的三角形,并證明你的結(jié)論;

(2)如圖2,F(xiàn)H∥CD交AD于點(diǎn)H,交BE于點(diǎn)M.NH∥BE,NB∥HE,連接NE.若AB=4,AH=2,求NE的長(zhǎng).

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:
①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;
②點(diǎn)O與O′的距離為4;
③四邊形AO BO′的面積為6+3
④∠AOB=150°;
⑤SAOC+SAOB=6+
其中正確的結(jié)論是( )

A.②③④⑤
B.①③④⑤
C.①②③⑤
D.①②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知MN是⊙O的直徑,直線PQ與⊙O相切于P點(diǎn),NP平分∠MNQ.
(1)求證:NQ⊥PQ;
(2)若⊙O的半徑R=2,NP= ,求NQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案