【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著。書中有下列問題“今有勾八步,股十五步。問勾中容圓徑幾何?”其意思為今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形能容納的圓形(內(nèi)切圓)直徑是步。

【答案】6
【解析】解:如圖所示:設(shè)⊙O內(nèi)切于△ABC,半徑為r,
在Rt△ABC中,AB=8,BC=15,由勾股定理得:
AC==17,
根據(jù)SABC=×AB×BC=×OD×AB+×BC×OE+×AC×OF,
可得:8×15=(8+15+17)×r,
解得:r=3,
所以直徑d=2r=6
【考點(diǎn)精析】通過靈活運(yùn)用勾股定理的概念,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.

(1)如圖,當(dāng)α=60°時(shí),延長BE交AD于點(diǎn)F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請(qǐng)直接寫出BE的長;
(2)在旋轉(zhuǎn)過程中,過點(diǎn)D作DG垂直于直線AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點(diǎn)時(shí),請(qǐng)直接寫出BE+CE的值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動(dòng)點(diǎn),且AE=DF,CF所在直線與對(duì)角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.

(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時(shí),求證:∠DAG=∠DCG;

(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;

(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)多面體的表面展開圖,每個(gè)面上都標(biāo)注了字母(字母在多面體的外表面),請(qǐng)根據(jù)要求回答問題.

(1)如果D面在多面體的左面,那么F面在哪里?

(2)B面和哪一面是相對(duì)的面?

(3)如果C面在前面,從上面看到的是D,那么從左面能看到哪一面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求證:此方程總有兩個(gè)實(shí)數(shù)根;

(2)若此方程有一個(gè)根大于0且小于1,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線BD上有一點(diǎn)C,則:

(1)1和∠ABC是直線AB,CE被直線_____所截得的____角;

(2)2和∠BAC是直線CE,AB被直線____所截得的_____角;

(3)3和∠ABC是直線_____、_____被直線_____所截得的____角;

(4)ABC和∠ACD是直線____、_____被直線_____所截得的角;

(5)ABC和∠BCE是直線_____、______被直線所截得的_____角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P以每秒2㎝的速度沿圖甲的邊框按從的路徑移動(dòng),相應(yīng)的ABP的面積S關(guān)于時(shí)間t的函數(shù)圖象如圖乙.若AB=6,試回答下列問題:

(1)圖甲中的BC長是多少?

(2)圖乙中的a是多少?

(3)圖甲中的圖形面積的多少?

(4)圖的b是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象過點(diǎn)(0,2),且與兩坐標(biāo)軸圍成的三角形面積為2,求此一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l和雙曲線 (k>0)交于A,B兩點(diǎn),P是線段AB上的點(diǎn)(不與A,B重合),過點(diǎn)A,B,P分別向x軸作垂線,垂足分別是C,D,E,連接OA,OB,OP,設(shè)△AOC面積是S1 , △BOD面積是S2 , △POE面積是S3 , 則(
A.S1<S2<S3
B.S1>S2>S3
C.S1=S2>S3
D.S1=S2<S3

查看答案和解析>>

同步練習(xí)冊(cè)答案