【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
【答案】
(1)
證明:∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中點,
∴AE=DE,
在△AEF和△DEC中,
∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴BD=CD
(2)
解:當△ABC滿足AB=AC時,四邊形AFBD是矩形.
理由如下:∵AF∥BD,AF=BD,
∴四邊形AFBD是平行四邊形,
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴□AFBD是矩形
【解析】根據(jù)兩直線平行,內錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,根據(jù)全等三角形對應邊相等可得AF=CD,再利用等量代換即可得證;
(2)先利用一組對邊平行且相等的四邊形是平行四邊形證明四邊形AFBD是平行四邊形,再根據(jù)一個角是直角的平行四邊形是矩形,可知∠ADB=90°,由等腰三角形三線合一的性質可知必須是AB=AC.
【考點精析】認真審題,首先需要了解等腰三角形的性質(等腰三角形的兩個底角相等(簡稱:等邊對等角)),還要掌握平行四邊形的判定與性質(若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】若(x+y)3-xy(x+y)=(x+y)·M(x+y≠0),則M是( )
A. x2+y2 B. x2-xy+y2 C. x2-3xy+y2 D. x2+xy+y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“家電下鄉(xiāng)”活動期間,凡購買指定家用電器的農村居民均可得到該商品售價13%的財政補貼.村民小李購買了一臺A型洗衣機,小王購買了一臺B型洗衣機,兩人一共得到財政補貼351元,又知B型洗衣機售價比A型洗衣機售價多500元.求:m
(1)A型洗衣機和B型洗衣機的售價各是多少元?
(2)小李和小王購買洗衣機除財政補貼外實際各付款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠BAC=90°,AD⊥BC,則下列結論中,正確的個數(shù)為( )
①AB⊥AC; ②AD與AC互相垂直; ③點C到AB的垂線段是線段AB;
④點A到BC的距離是線段AD的長度; ⑤線段AB的長度是點B到AC的距離;
⑥AD+BD>AB.
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,必然事件是( )
A.擲一枚硬幣,正面朝上
B.a是實數(shù),|a|≥0
C.某運動員跳高的最好成績是20.1米
D.從車間剛生產的產品中任意抽取一個,是次品
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象經過點A(﹣1,0),B(0,),C(2,0),其對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式及其頂點坐標;
(2)若P為y軸上的一個動點,連接PD,則PB+PD的最小值為 ;
(3)M(x,t)為拋物線對稱軸上一動點.
①若平面內存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com