【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,∠QON30°.公路PQA處距離O點(diǎn)240.如果火車行駛時(shí),周圍200米以內(nèi)會(huì)受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時(shí)的速度行駛時(shí),

1A處是否會(huì)受到火車的影響,并寫出理由

2)如果A處受噪音影響,求影響的時(shí)間.

【答案】(1)見解析;(2)16秒.

【解析】

1)過點(diǎn)AAC⊥ON,求出AC的長,即可判斷是否受影響;

2)設(shè)當(dāng)火車到B點(diǎn)時(shí)開始對(duì)A處有噪音影響,直到火車到D點(diǎn)噪音才消失,根據(jù)勾股定理即可求出BD的長,即可求出影響的時(shí)間.

1)如圖,過點(diǎn)AAC⊥ON,AB=AD=200米,

∠QON=30°,OA=240米,

AC=120米<200,故受到火車的影響,

2)當(dāng)火車到B點(diǎn)時(shí)開始對(duì)A處有噪音影響,此時(shí)AB=200,

AB=200,AC=120,

利用勾股定理得出BC=160,同理CD=160.BD=320米,

∴影響的時(shí)間為秒.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的高,EAC上一點(diǎn),BEADF,且有BF=AC, FD=CD。求證:(1) RtBDFRtADC (2) BEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線EF分別與直線AB,CD相交于點(diǎn)F,E,EM平分∠FED,ABCD,HP分別為直線AB和線段EF上的點(diǎn)。

(1)如圖1HM平分∠BHP,若HPEF,求∠M的度數(shù)。

(2)如圖2,EN平分∠HEFAB于點(diǎn)N,NQEM于點(diǎn)Q,當(dāng)H在直線AB上運(yùn)動(dòng)(不與點(diǎn)F重合)時(shí),探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為1,直線CD經(jīng)過圓心O,交⊙OC、D兩點(diǎn),直徑ABCD,點(diǎn)M是直線CD上異于點(diǎn)C、O、D的一個(gè)動(dòng)點(diǎn),AM所在的直線交于⊙O于點(diǎn)N,點(diǎn)P是直線CD上另一點(diǎn),且PM=PN

1)當(dāng)點(diǎn)M在⊙O內(nèi)部,如圖一,試判斷PN與⊙O的關(guān)系,并寫出證明過程;

2)當(dāng)點(diǎn)M在⊙O外部,如圖二,其它條件不變時(shí),(1)的結(jié)論是否還成立?請(qǐng)說明理由;

3)當(dāng)點(diǎn)M在⊙O外部,如圖三,∠AMO=15°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B在反比例函數(shù)y=的圖象上,過點(diǎn)A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點(diǎn)C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )

A.2 B.4 C.﹣2 D.﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1,y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+6,y1+4)。

(1)請(qǐng)?jiān)趫D中作出△A′B′C′;(2)寫出點(diǎn)A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由DAM平移得到.若過點(diǎn)E作EHAC,H為垂足,則有以下結(jié)論:點(diǎn)M位置變化,使得DHC=60°時(shí),2BE=DM;無論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無論點(diǎn)M運(yùn)動(dòng)到何處,CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=k0)經(jīng)過邊OB的中點(diǎn)CAE的中點(diǎn)D.已知等邊△OAB的邊長為4

(1)求該雙曲線所表示的函數(shù)解析式;

(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓E是三角形ABC的外接圓, BAC=45°,AOBCO,且BO=2,CO=3,分別以BC、AO所在直線建立x.

1)求三角形ABC的外接圓直徑;

2)求過ABC三點(diǎn)的拋物線的解析式;

3)設(shè)P是(2)中拋物線上的一個(gè)動(dòng)點(diǎn),且三角形AOP為直角三角形,則這樣的點(diǎn)P有幾個(gè)?(只需寫出個(gè)數(shù),無需解答過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案