【題目】已知:直線EF分別與直線AB,CD相交于點(diǎn)F,E,EM平分∠FED,AB∥CD,H,P分別為直線AB和線段EF上的點(diǎn)。
(1)如圖1,HM平分∠BHP,若HP⊥EF,求∠M的度數(shù)。
(2)如圖2,EN平分∠HEF交AB于點(diǎn)N,NQ⊥EM于點(diǎn)Q,當(dāng)H在直線AB上運(yùn)動(dòng)(不與點(diǎn)F重合)時(shí),探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論。
【答案】(1)45o (2)∠FHE=2∠ENQ或∠FHE=180°2∠ENQ,證明見(jiàn)解析
【解析】
(1)首先作MQ∥AB,根據(jù)平行線的性質(zhì),推得∠M= (∠FHP+∠HFP);然后根據(jù)HP⊥EF,推得∠FHP+∠HFP=90°,據(jù)此求出∠M的度數(shù)即可.
(2)①如圖2,首先判斷出∠NEQ=∠NEF+∠QEF=(∠HEF+∠DEF)=∠HED,然后根據(jù)NQ⊥EM,可得∠NEQ+∠ENQ=90°,推得∠ENQ=(180°-∠HED)=∠CEH,再根據(jù)AB∥CD,推得∠FHE=2∠ENQ即可.
②如圖3,首先判斷出∠NEQ=∠QEF-∠NEF=(∠DEF-∠HEF)=∠HED,然后根據(jù)NQ⊥EM,可得∠NEQ+∠ENQ=90°,推得∠ENQ=(180°-∠HED)=∠CEH,再根據(jù)AB∥CD,推得∠FHE=180°-2∠ENQ即可.
如圖1,作MQ∥AB,
∵AB∥CD,MQ∥AB,
∴MQ∥CD,
∴∠1=∠FHM,∠2=∠DEM,
∴∠1+∠2=∠FHM+∠DEM= (∠FHP+∠FED)= (∠FHP+∠HFP),
∵HP⊥EF,
∴∠HPF=90°,
∴∠FHP+∠HFP=180°90°=90°,
∵∠1+∠2=∠M,
∴∠M=×90°=45°.
(2)①如圖2,
∠FHE=2∠ENQ,理由如下:
∠NEQ=∠NEF+∠QEF= (∠HEF+∠DEF)= ∠HED,
∵NQ⊥EM,
∴∠NEQ+∠ENQ=90°,
∴∠ENQ= (180°∠HED)= ∠CEH,
∵AB∥CD,
∴∠FHE=∠CEH=2∠ENQ.
②如圖3,
∠FHE=180°2∠ENQ,理由如下:
∠NEQ=∠QEF∠NEF= (∠DEF∠HEF)= ∠HED,
∵NQ⊥EM,
∴∠NEQ+∠ENQ=90°,
∴∠ENQ= (180°∠HED)= ∠CEH,
∵AB∥CD,
∴∠FHE=180°∠CEH=180°2∠ENQ.
綜上,可得當(dāng)H在直線AB上運(yùn)動(dòng)(不與點(diǎn)F重合)時(shí),∠FHE=2∠ENQ或∠FHE=180°2∠ENQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)是用硬紙板做成的兩個(gè)全等的直角三角形,兩直角邊的長(zhǎng)分別為和斜邊長(zhǎng)為圖(2)是以為直角邊的等腰直角三角形.請(qǐng)你開(kāi)動(dòng)腦筋,將它們拼成一個(gè)直角梯形.
(1)在圖(3)處畫(huà)出拼成的這個(gè)圖形的示意圖;
(2)利用(1)畫(huà)出的圖形證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD與⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長(zhǎng);
②求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的直徑為10,點(diǎn)A、點(diǎn)B、點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD的長(zhǎng);
(2)如圖②,若∠CAB=60°,CF⊥BD,①求證:CF是⊙O的切線;②求由弦CD、CB以及弧DB圍成圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是 ;
② 設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是 。
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF =S△BDC,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸,并在所給坐標(biāo)系中畫(huà)出該函數(shù)的圖象;
(3)該函數(shù)的圖象經(jīng)過(guò)怎樣的平移得到y=x2的圖象?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長(zhǎng)線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,∠QON=30°.公路PQ上A處距離O點(diǎn)240米.如果火車(chē)行駛時(shí),周?chē)?/span>200米以?xún)?nèi)會(huì)受到噪音的影響.那么火車(chē)在鐵路MN上沿ON方向以72千米/時(shí)的速度行駛時(shí),
(1)A處是否會(huì)受到火車(chē)的影響,并寫(xiě)出理由
(2)如果A處受噪音影響,求影響的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),交y軸于C點(diǎn),其中B點(diǎn)坐標(biāo)為(3,0),C點(diǎn)坐標(biāo)為(0,3),且圖象對(duì)稱(chēng)軸為直線x=1.
(1)求此二次函數(shù)的關(guān)系式;
(2)P為二次函數(shù)y=ax2+bx+c圖象上一點(diǎn),且S△ABP=S△ABC,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com