【題目】在平面直角坐標系中,A(1,0),B(0,2),C(-4,2),若以A,B,C,D為頂點的四邊形是平行四邊形,則點D的坐標為________________。
【答案】(-3,0)或(5,0)或(-5,4)
【解析】
根據題意畫出符合條件的三種情況,根據圖形結合平行四邊形的性質、A、B、C的坐標求出即可.
解:
如圖有三種情況:①平行四邊形AD1CB,
∵A(1,0),B(0,2),C(-4,2),
∴AD1=BC=4,OD1=3,
則D的坐標是(-3,0);
②平行四邊形AD2BC,
∵A(1,0),B(0,2),C(-4,2),
∴AD2=BC=4,OD2=1+4=5,
則D的坐標是(5,0);
③平行四邊形ACD3B,
∵A(1,0),B(0,2),C(-4,2),
∴D3的縱坐標是2+2=4,橫坐標是-(4+1)=-5,
則D的坐標是(-5,4),
故答案為:(-3,0)或(5,0)或(-5,4).
科目:初中數學 來源: 題型:
【題目】如圖,測量人員在山腳A處測得山頂B的仰角為45°,沿著仰角為30°的山坡前進1000米到達D處,在D處測得山頂B的仰角為60°,求山的高度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA切⊙O于A,OP交⊙O于C,連接BC.
(Ⅰ)如圖①,若∠P=20°,求∠BCO的度數;
(Ⅱ)如圖②,過A作弦AD⊥OP于E,連接DC,若OE= CD,求∠P的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓的直徑,O為半圓的圓心,AC是弦,取弧的中點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)當AB=10,AC=5時,求CE的長;
(3)連接CD,AB=10.當=時,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中,屬于假命題的是( 。
A. 有一個銳角相等的兩個直角三角形一定相似
B. 對角線相等的菱形是正方形
C. 拋物線y=x2﹣20x+17的開口向上
D. 在一次拋擲圖釘的試驗中,若釘尖朝上的頻率為,釘尖朝下的概率為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以點A為圓心,AB長為半徑作弧交AC于M,分別以B、M為圓心,以大于BM長為半徑作弧,兩弧相交于點N,射線AN與BC相交于D,則AD的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,與都是等腰直角三角形,直角邊,在同一條直線上,點、分別是斜邊、的中點,點為的中點,連接,,,,.
(1)觀察猜想:
圖1中,與的數量關系是______,位置關系是______.
(2)探究證明:
將圖1中的繞著點順時針旋轉(),得到圖2,與、分別交于點、,請判斷(1)中的結論是否成立,若成立,請證明;若不成立,請說明理由.
(3)拓展延伸:
把繞點任意旋轉,若,,請直接列式求出面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網絡中,給出了△ABC和△DEF(網點為網格線的交點)
(1)將△ABC向左平移兩個單位長度,再向上平移三個單位長度,畫出平移后的圖形△A1B2C3;
(2)畫出以點O為對稱中心,與△DEF成中心對稱的圖形△D2E2F2;
(3)求∠C+∠E的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,延長BG交AC于E、 F為AB上的一點,CF⊥AD于H,下列判斷正確的有( )
A.AD是△ABE的角平分線B.BE是△ABD邊AD上的中線
C.AH為△ABC的角平分線D.CH為△ACD邊AD上的高
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com