【題目】小明租用共享單車從家出發(fā),勻速騎行到相距米的圖書館還書.小明出發(fā)的同時(shí),他的爸爸以每分鐘米的速度從圖書館沿同一條道路步行回家,小明在圖書館停留了分鐘后沿原路按原速返回.設(shè)他們出發(fā)后經(jīng)過(分)時(shí),小明與家之間的距離為(米),小明爸爸與家之間的距離為(米),圖中折線、線段分別表示、與之間的函數(shù)關(guān)系的圖象.小明從家出發(fā),經(jīng)過___分鐘在返回途中追上爸爸.
【答案】探究一:∠FDC+∠ECD=180°+∠A;探究二:∠DPC=90°+∠A;探究三:∠DPC=(∠A+∠B);探究四:∠P=(∠A+∠B+∠E+∠F)-180°.
【解析】
探究一:根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根據(jù)三角形內(nèi)角和定理整理即可得解;
探究二:根據(jù)角平分線的定義可得∠PDC=∠ADC,∠PCD=∠ACD,然后根據(jù)三角形內(nèi)角和定理列式整理即可得解;
探究三:根據(jù)四邊形的內(nèi)角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;
探究四:根據(jù)六邊形的內(nèi)角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.
解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,
∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;
探究二:∵DP、CP分別平分∠ADC和∠ACD,
∴∠PDC=∠ADC,∠PCD=∠ACD,
∴∠DPC=180°-∠PDC-∠PCD,
=180°-∠ADC-∠ACD,
=180°-(∠ADC+∠ACD),
=180°-(180°-∠A),
=90°+∠A;
探究三:∵DP、CP分別平分∠ADC和∠BCD,
∴∠PDC=∠ADC,∠PCD=∠BCD,
∴∠DPC=180°-∠PDC-∠PCD,
=180°-∠ADC-∠BCD,
=180°-(∠ADC+∠BCD),
=180°-(360°-∠A-∠B),
=(∠A+∠B);
探究四:六邊形ABCDEF的內(nèi)角和為:(6-2)180°=720°,
∵DP、CP分別平分∠EDC和∠BCD,
∴∠PDC=∠EDC,∠PCD=∠BCD,
∴∠P=180°-∠PDC-∠PCD
=180°-∠EDC-∠BCD
=180°-(∠EDC+∠BCD)
=180°-(720°-∠A-∠B-∠E-∠F)
=(∠A+∠B+∠E+∠F)-180°,
即∠P=(∠A+∠B+∠E+∠F)-180°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組想測量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1:.在離C點(diǎn)40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.
(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?
(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購買溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,將△ABC以每秒2cm的速度沿所在直線向右平移,所得圖形對應(yīng)為△DEF,設(shè)平移時(shí)間為t秒,若要使成立,則的值為_____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形。例如:某三角形三邊長分別是5,6和8,因?yàn)?/span>,所以這個(gè)三角形是常態(tài)三角形。
(1)若△ABC三邊長分別是2,和4,則此三角形_________常態(tài)三角形(填“是”或“不是”);
(2)若Rt△ABC是常態(tài)三角形,則此三角形的三邊長之比為__________________(請按從小到大排列);
(3)如圖,Rt△ABC中,∠ACB=90°,BC=6,點(diǎn)D為AB的中點(diǎn),連接CD,若△BCD是常態(tài)三角形,求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。
A. 55°B. 60°C. 65°D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與矩形EFGH在直線l的同側(cè),邊AD,EH在直線l上,且AD=5cm,EH=4cm,EF=3cm.保持正方形ABCD不動(dòng),將矩形EFGH沿直線l左右移動(dòng),連接BF,CG,則BF+CG的最小值為_____________cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點(diǎn),并且y1<0<y2<y3,則下列各式中正確的是( )
A.x1<x2<x3 B.x1<x3<x2
C.x2<x1<x3 D.x2<x3<x1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的高線,在BC邊上截取點(diǎn)E,使得CE=BD,過E作EF∥AB,過C作CP⊥BC交EF于點(diǎn)P。過B作BM⊥AC于M,連接EM、PM。
(1)依題意補(bǔ)全圖形;
(2)若AD=DC,探究EM與PM的數(shù)量關(guān)系與位置關(guān)系,并加以證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com