【題目】下列說法不正確的是(  )

A. 了解全市中學(xué)生對泰州“三個名城”含義的知曉度的情況,適合用抽樣調(diào)查

B. 若甲組數(shù)據(jù)方差S2=0.39,乙組數(shù)據(jù)方差S2=0.27,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

C. 某種彩票中獎的概率是 ,買100張該種彩票一定會中獎

D. 數(shù)據(jù)﹣1、1.5、2、2、4的中位數(shù)是2

【答案】C

【解析】試題由普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似;以及方差的意義,概率公式中位數(shù)的定義對各選項分析判斷后利用排除法求解.

試題解析:A、了解全市中學(xué)生對泰州三個名城含義的知曉度的情況,知道大概情況即可,適合用抽樣調(diào)查,正確,故本選項錯誤;

B、039027,乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定,正確,故本選項錯誤;

C、概率是針對數(shù)據(jù)非常多時,趨近的一個數(shù),所以概率是,并不能說買100張該種彩票就一定能中獎,錯誤,故本選項正確;

D、五個數(shù)按照從小到大排列,第3個數(shù)是2,所以,中位數(shù)是2,正確,故本選項錯誤.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時出發(fā)相向而行,其中甲到達B地后立即返回,如圖是甲乙兩車離A地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象

(1)求甲車離A地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)若它們出發(fā)第5小時時,離各自出發(fā)地的距離相等,求乙車離A地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地長途汽車站規(guī)定前來乘車的旅客可以免費隨身攜帶一定質(zhì)量的行李,如果行李質(zhì)量超過規(guī)定,則應(yīng)交納行李費,行李費用y(元)與行李質(zhì)量x(千克)之間的關(guān)系可以用如圖所示的圖象表示,請觀察圖象回答下列問題:

1)旅客最多能免費攜帶多少千克的行李?

2)求行李費用y(元)與行李質(zhì)量x(千克)之間的函數(shù)關(guān)系式;

3)一位旅客隨身攜帶了60千克的行李,他應(yīng)交納行李費多少元?

4)另一位旅客交納了120元行李費,他攜帶的行李重多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形ABC(頂點是網(wǎng)格線的交點的三角形)的頂點B、C的坐標(biāo)分別為(﹣20),(﹣12).

1)請在如圖所示的網(wǎng)格中根據(jù)上述點的坐標(biāo)建立對應(yīng)的直角坐標(biāo)系;(只要畫圖,不需要說明)

2)在(1)中建立的平面直角坐標(biāo)系中,先畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,再畫出△A1B1C1關(guān)于x軸對稱的圖形△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大剛在晚上由燈柱A走向燈柱B,當(dāng)他走到M點時,發(fā)覺他身后影子的頂部剛好接觸到燈柱A的底部,當(dāng)他向前再走12米到N點時,發(fā)覺他身前的影子剛好接觸到燈柱B的底部,已知大剛的身高是1.6米,兩根燈柱的高度都是9.6米,設(shè)AM=NB=x米.求:兩根燈柱之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用直尺和圓規(guī)作一個角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=AOB的依據(jù)是( )

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC, ACB=90,AC=BC, 直線MN經(jīng)過點C,ADMN,BEMN,垂足分別為D,E.

(1) 若直線MN在圖①位置時,猜想AD,BE,DE三條線段具有怎樣的數(shù)量關(guān)系?并且給出證明.

(2) 當(dāng)直線MN在圖②位置時,(1)中的結(jié)論還成立嗎?若成立,請給出證明;若不成立,給出新的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點B的坐標(biāo)為(0,2),點A在第一象限內(nèi),將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時點A′的橫坐標(biāo)為3,則點B′的坐標(biāo)為( 。

A. (2,4) B. (2,3) C. (3,4) D. (3,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道“兩邊和一角分別相等的兩個三角形不一定全等”,如圖(1),,,,但卻不全等.但是如果兩個直角三角形呢?如圖(2),,,則嗎?

(1)根據(jù)圖(2)完成以下證明和閱讀:

中,

,____________(勾股定理)

,____________

,.____________

中,,

____________(____________)

歸納:斜邊和一條直角邊相等的兩個直角三角形全等;簡稱為“斜邊直角邊”或“”.

幾何語言如下:

中,

,

(2)如圖(3)已知;求證:平分.(每一步都要填寫理由)

查看答案和解析>>

同步練習(xí)冊答案