【題目】我們知道“兩邊和一角分別相等的兩個三角形不一定全等”,如圖(1),,,,但卻不全等.但是如果兩個直角三角形呢?如圖(2),,則嗎?

(1)根據圖(2)完成以下證明和閱讀:

中,

____________(勾股定理)

,____________

.____________

中,,

____________(____________)

歸納:斜邊和一條直角邊相等的兩個直角三角形全等;簡稱為“斜邊直角邊”或“”.

幾何語言如下:

中,

,

(2)如圖(3)已知;求證:平分.(每一步都要填寫理由)

【答案】1)詳見解析;(2)詳見解析.

【解析】

1)根據勾股定理得到BC=EF,根據SSS證三角形全等;(2)根據HL證三角形全等,根據全等三角形性質得到∠ACB=ACD.

證明:(1中,

,DE2(勾股定理)

, DE2-DF2

.EF

中,,,

SSS

2)因為(已知)

所以ABCADC是直角三角形(直角三角形定義)

因為AC=AC,(已知)

所以ABCADCHL

所以∠ACB=ACD(全等三角形性質)

所以平分(角平分線定義)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不正確的是( 。

A. 了解全市中學生對泰州“三個名城”含義的知曉度的情況,適合用抽樣調查

B. 若甲組數(shù)據方差S2=0.39,乙組數(shù)據方差S2=0.27,則乙組數(shù)據比甲組數(shù)據穩(wěn)定

C. 某種彩票中獎的概率是 ,買100張該種彩票一定會中獎

D. 數(shù)據﹣1、1.5、2、2、4的中位數(shù)是2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點A(0,﹣2),點B(3m,2m+1),點C(6,2),點D.

(1)線段AC的中點E的坐標為_____

(2)ABCD的對角線BD長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為參加1123日舉行的丹東市我愛詩詞中小學生詩詞大賽決賽,某校每班選25名同學參加預選賽,成績分別為AB、C、D四個等級,其中相應等級的得分依次記為10分、9分、8分、7分,學校將八年級的一班和二班的成績整理并繪制成如下統(tǒng)計圖:

根據以上提供的信息解答下列問題

1)請補全一班競賽成績統(tǒng)計圖;

2)請直接寫出a、bc、d的值;

班級

 平均數(shù)(分)

 中位數(shù)(分)

 眾數(shù)(分)

 一班

 a   

 b   

 9

 二班

 8.76

 c   

 d   

3)請從平均數(shù)和中位數(shù)兩個方面對這兩個班級的成績進行分析.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,A=D.

(1)求證:ACDE;

(2)BF=13,EC=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是常見的安全標記,其中是軸對稱圖形的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張長為8cm,寬為6cm的長方形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點與長方形的一個頂點重合,其余的兩個頂點在長方形的邊上).則剪下的等腰三角形的底邊長可以是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還有4升油.假設加油前、后汽車都以100千米小時的速度勻速行駛,已知油箱中剩余油量(升)與行駛時間(小時)之間的關系如圖所示.

1)求張師傅加油前油箱剩余油量(升)與行駛時間(小時)之間的關系式;

2)求出的值;

3)求張師傅途中加油多少升?

查看答案和解析>>

同步練習冊答案