【題目】如圖,矩形ABCD中,AB=4,BC=6,M是BC的中點(diǎn),DEAM,E為垂足.
(1)證明:△ABM∽△DEA;
(2)求△ADE的面積.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)先根據(jù)矩形的性質(zhì),得到AD∥BC,則∠DAE=∠AMB,又由∠DEA=∠B,根據(jù)有兩角對(duì)應(yīng)相等的兩三角形相似,即可證明出△DAE∽△AMB;(2)由△DAE∽△AMB,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求出DE、AE的長(zhǎng),進(jìn)而可求面積.
(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠DAE=∠AMB,
又∵∠DEA=∠B=90°,
∴△DAE∽△AMB;
(2)由(1)知△DAE∽△AMB,
∴DE:AD=AB:AM,
∵M是邊BC的中點(diǎn),BC=6,
∴BM=3,
又∵AB=4,∠B=90°,
∴AM=5,
∴,
∴ ,,
∴ △ADE的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)=與反比例函數(shù)=(>0)的圖像在第一象限交于點(diǎn)A,點(diǎn)C在以B(7,0)為圓心,2為半徑的⊙B上,已知AC長(zhǎng)的最大值為,則該反比例函數(shù)的函數(shù)表達(dá)式為__________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線,線段在直線上,于點(diǎn),且,是線段上異于兩端點(diǎn)的一點(diǎn),過(guò)點(diǎn)的直線分別交、于點(diǎn)、(點(diǎn)、位于點(diǎn)的兩側(cè)),滿足,連接、.
(1)求證:;
(2)連結(jié)、,與相交于點(diǎn),如圖2,
①當(dāng)時(shí),求證:;
②當(dāng)時(shí),設(shè)的面積為,的面積為,的面積為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①平分弦的直徑垂直于弦;②在n次隨機(jī)實(shí)驗(yàn)中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內(nèi)接多邊形一定是正多邊形;⑤若一個(gè)事件可能發(fā)生的結(jié)果共有n種,則每一種結(jié)果發(fā)生的可能性是.其中正確的個(gè)數(shù)( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:不相交的兩個(gè)函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的“親近距離”
(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;
(2)在探究問(wèn)題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過(guò)程中,有人提出:過(guò)拋物線的頂點(diǎn)向x軸作垂線與直線相交,則該問(wèn)題的“親近距離”一定是拋物線頂點(diǎn)與交點(diǎn)之間的距離,你同意他的看法嗎?請(qǐng)說(shuō)明理由.
(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當(dāng)點(diǎn)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明理由
(3)若D為AB的中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.若AC=3,AB=5,則CE的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,弦垂直于直徑,垂足為,連結(jié),將沿翻轉(zhuǎn)得到,直線與直線相交于點(diǎn).
(1)求證:是的切線;
(2)若為的中點(diǎn),①求證:四邊形是菱形;②若,求的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD(AB>AD)中,點(diǎn)M是邊DC上的一點(diǎn),點(diǎn)P是射線CB上的動(dòng)點(diǎn),連接AM,AP,且∠DAP=2∠AMD.
(1)若∠APC=76°,則∠DAM= ;
(2)猜想∠APC與∠DAM的數(shù)量關(guān)系為 ,并進(jìn)行證明;
(3)如圖1,若點(diǎn)M為DC的中點(diǎn),求證:2AD=BP+AP;
(4)如圖2,當(dāng)∠AMP=∠APM時(shí),若CP=15,=時(shí),則線段MC的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com