【題目】如圖,一次函數(shù)=與反比例函數(shù)=(>0)的圖像在第一象限交于點A,點C在以B(7,0)為圓心,2為半徑的⊙B上,已知AC長的最大值為,則該反比例函數(shù)的函數(shù)表達式為__________________________.
【答案】或
【解析】
過A作AD垂直于x軸,設(shè)A點坐標為(m,n),則根據(jù)A在y=x上得m=n,由AC長的最大值為,可知AC過圓心B交⊙B于C,進而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根據(jù)勾股定理列方程即可求出m的值,進而可得A點坐標,即可求出該反比例函數(shù)的表達式.
過A作AD垂直于x軸,設(shè)A點坐標為(m,n),
∵A在直線y=x上,
∴m=n,
∵AC長的最大值為,
∴AC過圓心B交⊙B于C,
∴AB=7-2=5,
在Rt△ADB中,AD=m,BD=7-m,AB=5,
∴m2+(7-m)2=52,
解得:m=3或m=4,
∵A點在反比例函數(shù)=(>0)的圖像上,
∴當m=3時,k=9;當m=4時,k=16,
∴該反比例函數(shù)的表達式為: 或 ,
故答案為 或
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象過點A(2,3).
(1)求反比例函數(shù)的解析式;
(2)過A點作AC⊥x軸,垂足為C.若P是反比例函數(shù)圖象上的一點,求當△PAC的面積等于6時,點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)如圖,在平面直角坐標系xOy中,拋物線()與x軸交于A,B兩點(點A在點B的左側(cè)),經(jīng)過點A的直線l:與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.
(1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中k,b用含a的式子表示);
(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;
(3)設(shè)P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家蔬菜公司計劃到某綠色蔬菜基地收購A,B兩種蔬菜共140噸,預計兩種蔬菜銷售后獲利的情況如下表所示:
銷售品種 | A種蔬菜 | B種蔬菜 |
每噸獲利(元) | 1200 | 1000 |
其中A種蔬菜的5%,B種蔬菜的3%須運往C市場銷售,但C市場的銷售總量不超過5.8噸.設(shè)銷售利潤為W元(不計損耗),購進A種蔬菜x噸.
(1)求W與x之間的函數(shù)關(guān)系式;
(2)將這140噸蔬菜全部銷售完,最多可獲得多少利潤?
(3)由于受市場因素影響,公司進貨時調(diào)查發(fā)現(xiàn),A種蔬菜每噸可多獲利100元,B種蔬菜每噸可多獲利m(200<m<400)元,但B種蔬菜銷售數(shù)量不超過90噸.公司設(shè)計了一種獲利最大的進貨方案,銷售完后可獲利179000元,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,點是邊上一定點,且.
(1)當時,上存在點,使與相似,求的長度.
(2)對于每一個確定的的值上存在幾個點使得與相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,M為BC上一點,連接AM交對角線BD于點G,并且∠ABM=2∠BAM.
(1)求證:AG=BG;
(2)若點M為BC的中點,同時S△BMG=1,求三角形ADG的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,M是BC的中點,DEAM,E為垂足.
(1)證明:△ABM∽△DEA;
(2)求△ADE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com