【題目】如圖1,已知直線,線段在直線上,于點(diǎn),且,是線段上異于兩端點(diǎn)的一點(diǎn),過(guò)點(diǎn)的直線分別交、于點(diǎn)、(點(diǎn)、位于點(diǎn)的兩側(cè)),滿足,連接、.
(1)求證:;
(2)連結(jié)、,與相交于點(diǎn),如圖2,
①當(dāng)時(shí),求證:;
②當(dāng)時(shí),設(shè)的面積為,的面積為,的面積為,求的值.
【答案】(1)證明見(jiàn)解析;(2)①證明見(jiàn)解析;②
【解析】
(1)根據(jù)平行和垂直得出∠ABP=∠CBE,再根據(jù)SAS證明即可;
(2)①延長(zhǎng)AP交CE于點(diǎn)H,求出AP⊥CE,證出△CPD∽△BPE,推出DP=PE,求出平行四邊形BDCE,推出CE∥BD即可;②分別用S表示出△PAD和△PCE的面積,代入求出即可.
(1)∵,
∴,
在和中,
,
∴;
(2)①延長(zhǎng)交于點(diǎn),
∴,
∴∠APB=∠CEB,
∴,
∴,
∵,即為的中點(diǎn),,
∴∽,
∴,
∴,
∴四邊形是平行四邊形,
∴,
∵,
∴;
②∵,
∴,
∴,
∵,
∴∽,
∴,
設(shè)△PBE的面積S△PBE=S,則△PCE的面積S△PCE滿足,即S2=(n-1)S,
即,
∵,
∴,
∵,
∴S1=(n-1)S△PAE,即S1=(n+1)(n-1)S,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象過(guò)點(diǎn)A(2,3).
(1)求反比例函數(shù)的解析式;
(2)過(guò)A點(diǎn)作AC⊥x軸,垂足為C.若P是反比例函數(shù)圖象上的一點(diǎn),求當(dāng)△PAC的面積等于6時(shí),點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,M為BC上一點(diǎn),連接AM交對(duì)角線BD于點(diǎn)G,并且∠ABM=2∠BAM.
(1)求證:AG=BG;
(2)若點(diǎn)M為BC的中點(diǎn),同時(shí)S△BMG=1,求三角形ADG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y= (x<0)的圖象相交于點(diǎn)A(-1,2)、點(diǎn)B(-4,n).
(1)求此一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)在x軸上存在一點(diǎn)P,使△PAB的周長(zhǎng)最小,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教育部布的《基礎(chǔ)教育課程改革綱要》要求每位學(xué)生每學(xué)年都要參加社會(huì)實(shí)踐活動(dòng),某學(xué)校組織了一次測(cè)量探究活動(dòng),如圖,某大樓的頂部豎有一塊廣告牌CD,小明與同學(xué)們?cè)谏狡碌钠履_A處測(cè)得廣告牌底部D的仰角為53°,沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求廣告牌CD的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,tan53°≈,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,M是BC的中點(diǎn),DEAM,E為垂足.
(1)證明:△ABM∽△DEA;
(2)求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,點(diǎn)P在邊AB上,點(diǎn)D、Q分別為邊BC上的點(diǎn),線段AD的延長(zhǎng)線與線段PQ的延長(zhǎng)線交于點(diǎn)F,連接CP交AF于點(diǎn)E,若∠BPF=∠APC,FD=FQ.
(1)如圖1,求證:AF⊥CP;
(2)如圖2,作∠AFP的平分線FM交AB于點(diǎn)M,交BC于點(diǎn)N,若FN=MN,求證:;
(3)在(2)的條件下,連接DM、MQ,分別交PC于點(diǎn)G、H,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com