【題目】如圖,∠MON30°,點A1ON上,點C1OM上,OA1A1C12C1B1ON于點B1,以A1B1B1C1為鄰邊作矩形A1B1C1D1,點A1,A2關于點B對稱,A2C2A1C1OM于點C2,C2B2ON于點B2,以A2B2B2C2為鄰邊作矩形A2B2C2D2,連接D1D2,點A2A3關于點B2對稱,A3C3A2C2OM于點C3C3B3ON于點B3,以A3B3B3C3為鄰邊作矩形A3B3C3D3,連接D2D3,……依此規(guī)律繼續(xù)下去,則DnDn+1_____

【答案】2n1

【解析】

分別求出D1D2D2D3,D3D4,探究規(guī)律,利用規(guī)律解決問題即可.

解:由題意D1D220,

D2D3221,

D3D4422,

DnDn+12n1,

故答案為2n1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】點P的坐標是a,b,從-2,-1,0,1,2這五個數(shù)中任取一個數(shù)作為a的值,再從余下的四個數(shù)中任取一個數(shù)作為b的值,則點Pa,b在平面直角坐標系中第二象限內(nèi)的概率是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某劇院舉行專場音樂會,成人票每張20元,學生票每張5. 暑假期間,為了豐富廣大師生的業(yè)余文化生活,影劇院制定了兩種優(yōu)惠方案,方案一:購買一張成人票贈送一張學生票;方案二:按總價的90%付款. 某校有4名老師帶隊,與若干名(不少于4人)學生一起聽音樂會.設學生人數(shù)為人,為整數(shù))

1)根據(jù)題意填表:

2)設方案一付款總金額為元,方案二付款總金額為元,分別求,關于的函數(shù)解析式;

3)根據(jù)題意填空:

①若用兩種方案購買音樂會的花費相同,則聽音樂會的學生有 人;

②若有60名學生聽音樂會,則用方案 購買音樂會票的花費少;

③若用一種方案購買音樂會票共花費了元,則用方案 購買音樂會票,使聽音樂的學生人數(shù)多.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,點C是弧AB的中點,D是弦AB上一動點,且不與AB重合,CD的延長線交于⊙OE,連接AE、BE,過點AAFBC,垂足為F,∠ABC30°

1)求證:AF是⊙O的切線;

2)若BC6,CD3,則DE的長為   

3)當點D在弦AB上運動時,的值是否發(fā)生變化?如果變化,請寫出其變化范圍;如果不變,請求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,的切線,,交于點,為弧的中點,連接,交于點

(1)求證:的切線;

(2)求證:

(3) ,求

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ACAB,點EBC上,以BE為直徑的O經(jīng)過點A,點D是直徑BE下方半圓的中點,ADBC于點F,且∠B2D

1)求∠B的度數(shù);

2)求證:ACO的切線;

3)連接DE,若OD3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一張矩形紙片ABCD,已知AB8,AD6,EAB上一點,AE5,現(xiàn)要剪下一張等腰三角形紙片(AEP),使點P落在矩形ABCD的某一條邊上,則等腰三角形AEP的底邊上的高的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰直角三角形OAA1的直角邊OAx軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,OA1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3依此規(guī)律,則點A2020的坐標是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)形結合是一種重要的數(shù)學思維,觀察下面的圖形和算式:

1112

1+3422

1+3+5932

1+3+5+71642

1+3+5+7+9═2552

解答下列問題:請用上面得到的規(guī)律計算:1+3+7+……+101=( 。

A.2601B.2501C.2400D.2419

查看答案和解析>>

同步練習冊答案