【題目】如圖點E,F分別是矩形ABCD的邊AD,AB上一點,若AE=DC=2ED,且EF⊥EC.
(1)求證:點F為AB的中點.
(2)延長EF與CB的延長線相交于點H,連接AH,已知ED=2,求AH的值.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)全等三角形的判定,證得△AEF≌△DCE,再根據(jù)全等三角形的性質(zhì),證得DE=AF,進而得證;
(2)根據(jù)全等三角形的判定方法,證明△AEF≌△BHF,進而求得HB=AB=AE=4,再利用勾股定理求出AH的值即可.
(1)證明:∵EF⊥EC,
∴∠CEF=90°,
∴∠AEF+∠DEC=90°,
∵四邊形ABCD是矩形,
∴∠AEF+∠AFE=90°,
∴∠DEC+∠DCE=90°,
∴∠AEF=∠DCE,∠AFE=∠DEC,
∵AE=DC,
∴△AEF≌△DCE(AAS),
∴DE=AF,
∵AE=DC=AB=2DE,
∴AB=2AF,
∴F為AB的中點;
(2)由(1)知AF=FB,且AE∥BH,
∴∠FBH=∠FAE=90°,∠AEF=∠FHB,
∴△AEF≌△BHF(AAS),
∴HB=AE,
∵DE=2,且AE=2DE,
∴AE=4,
∴HB=AB=AE=4,
∴,
∴,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A地,到達A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)寫出A、B兩地直接的距離;
(2)求出點M的坐標,并解釋該點坐標所表示的實際意義;
(3)若兩人之間保持的距離不超過3km時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持聯(lián)系時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,.點在上以的速度由點向點運動,同時點在上由點向點運動,它們運動的時間為.
(1)如圖①,,,若點的運動速度與點的運動速度相等,當時,與是否全等,請說明理由,并判斷此時線段和線段的位置關(guān)系;
(2)如圖②,將圖①中的“,”為改“”,其他條件不變.設(shè)點的運動速度為,是否存在實數(shù),使得與全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C,E,F(xiàn),B在同一直線上,點A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當AC=6,CP=3時,求sin∠PAB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,等腰直角中,,,現(xiàn)將該三角形放置在平面直角坐標系中,點坐標為,點坐標為.
(1)過點作軸,求的長及點的坐標;
(2)連接,若為坐標平面內(nèi)異于點的點,且以、、為頂點的三角形與全等,請直接寫出滿足條件的點的坐標;
(3)已知,試探究在軸上是否存在點,使是以為腰的等腰三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x﹣與x軸交于點B1,以O(shè)B1為邊長作等邊三角形A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點A2017的橫坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若CD=2,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com