【題目】如圖,AB為⊙O的直徑,且AB=4,點C在半圓上,OC⊥AB,垂足為點O,P為半圓上任意一點,過P點作PE⊥OC于點E,設(shè)△OPE的內(nèi)心為M,連接OM、PM.當(dāng)點P在半圓上從點B運動到點A時,內(nèi)心M所經(jīng)過的路徑長為_____.
【答案】
【解析】
根據(jù)三角形內(nèi)心的性質(zhì)可求得∠PMO=135°,再由全等三角形的判定和性質(zhì)可得∠CMO=135°,過C、M、O三點作⊙O′,連O′C,O′O,在優(yōu)弧CO取點D,連DC,DO,在等腰直接三角形中求得O′O,從而求得弧OMC,同理可求得弧ONC,從而求得點M所經(jīng)過的路徑.
解:∵△OPE的內(nèi)心為M,
∴∠MOP=∠MOC,∠MPO=∠MPE,
∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),
∵PE⊥OC,即∠PEO=90°,
∴∠PMO=180°﹣×(∠EOP+∠OPE)=180°﹣×(180°﹣90°)=135°,
如圖,連接OC,
∵OP=OC,OM=OM,
而∠MOP=∠MOC,
∴△OPM≌△OCM(SAS),
∴∠CMO=∠PMO=135°,
所以點M在以OC為弦,并且所對的圓周角為135°的兩段劣弧上(弧OMC和弧ONC);
點M在扇形BOC內(nèi)時,
過C、M、O三點作⊙O′,連O′C,O′O,
在優(yōu)弧CO取點D,連DC,DO,
∵∠CMO=135°,
∴∠CDO=180°﹣135°=45°,
∴∠CO′O=90°,而OA=2cm,
∴O′O=OC=×2=,
∴弧OMC的長=cm,
同理:點M在扇形AOC內(nèi)時,同①的方法得,弧ONC的長為cm,
所以內(nèi)心M所經(jīng)過的路徑長為2×=πcm.
故答案為:πcm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進(jìn)行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計表:
“祖沖之獎”的學(xué)生成績統(tǒng)計表:
分?jǐn)?shù)分 | 80 | 85 | 90 | 95 |
人數(shù)人 | 4 | 2 | 10 | 4 |
根據(jù)圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數(shù)是多少,并將條形統(tǒng)計圖補(bǔ)充完整;
獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是多少分,眾數(shù)是多少分;
在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“”,“”和“2”,隨機(jī)摸出一個小球,把小球上的數(shù)字記為x放回后再隨機(jī)摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:小明研究了這樣一個問題:求使得等式成立的x的個數(shù).小明發(fā)現(xiàn),先將該等式轉(zhuǎn)化為,再通過研究函數(shù)的圖象與函數(shù)的圖象(如圖)的交點,使問題得到解決.
(1)當(dāng)k=1時,使得原等式成立的x的個數(shù)為_______;
(2)當(dāng)0<k<1時,使得原等式成立的x的個數(shù)為_______;
(3)當(dāng)k>1時,使得原等式成立的x的個數(shù)為_______.
參考小明思考問題的方法,解決問題:關(guān)于x的不等式只有一個整數(shù)解,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點.
求拋物線的函數(shù)表達(dá)式;
求拋物線的頂點坐標(biāo),直接寫出當(dāng)時,x的取值范圍;
設(shè)點M是拋物線的頂點,試判斷拋物線上是否存在點H滿足?若存在,請求出點H的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,點A的坐標(biāo)(﹣8,0),點C在線段AO上以每秒2個單位長度的速度由A向O運動,運動時間為t秒,連接BC,過點A作AD⊥BC,垂足為點E,分別交BO于點F,交y軸于點 D.
(1)用t表示點D的坐標(biāo) ;
(2)如圖1,連接CF,當(dāng)t=2時,求證:∠FCO=∠BCA;
(3)如圖2,當(dāng)BC平分∠ABO時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:過外一點C作直徑AF,垂足為E,交弦AB于D,若,則
判斷直線BC與的位置關(guān)系,并證明;
為OA中點,,,請直接寫出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為4,圓心角為90°的扇形BAC繞A點逆時針旋轉(zhuǎn)60°,點B、C的對應(yīng)點分別為點D、E且點D剛好在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校體育組為了解全校學(xué)生“最喜歡的一項球類項目”,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計圖:
請你根據(jù)統(tǒng)計圖回答下列問題:
(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請補(bǔ)全條形統(tǒng)計圖;
(2)請你估計全校500名學(xué)生中最喜歡“排球”項目的有多少名?
(3)在扇形統(tǒng)計圖中,“籃球”部分所對應(yīng)的圓心角是多少度?
(4)籃球教練在制定訓(xùn)練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com