【題目】如圖,拋物線經(jīng)過,兩點.
求拋物線的函數(shù)表達式;
求拋物線的頂點坐標(biāo),直接寫出當(dāng)時,x的取值范圍;
設(shè)點M是拋物線的頂點,試判斷拋物線上是否存在點H滿足?若存在,請求出點H的坐標(biāo);若不存在,請說明理由.
【答案】(1)(2)(3)
【解析】
根據(jù)待定系數(shù)法,可得拋物線的解析式;
根據(jù)拋物線的解析式和二次函數(shù)的性質(zhì),可得答案;
根據(jù)余角的性質(zhì),可得,根據(jù)相似三角形的判定與性質(zhì),可得,根據(jù)解方程組,可得H點坐標(biāo).
將,兩點代入拋物線中,可得:,
解得:,
所以拋物線的解析式為:;
拋物線的解析式為:.
所以拋物線的頂點坐標(biāo)為,
當(dāng)時,x的取值范圍為:;
存在點H滿足,
由知M點的坐標(biāo)為
如圖:作交x軸于點,作軸于點N,
,,
.
,
∽,
,
,
,
解得,
點坐標(biāo)為
直線MK的解析式為,
,
把代入,化簡得.
,
,,將代入,
解得,
直線MK與拋物線有兩個交點M、H,
拋物線上存在點H,滿足,
此時點H的坐標(biāo)為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿對角線折疊,設(shè)重疊部分為△EBD,那么,有下列說法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EB=ED;③折疊后得到的圖形是軸對稱圖形;④折疊后∠ABE和∠CBD一定相等;其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為4,圓心角為90°的扇形BAC繞A點逆時針旋轉(zhuǎn)60°,點B、C的對應(yīng)點分別為點D、E且點D剛好在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小天在學(xué)習(xí)銳角三角函數(shù)中遇到這樣一個問題:在中,,,則______
小天根據(jù)學(xué)習(xí)幾何的經(jīng)驗,先畫出了幾何圖形如圖,他發(fā)現(xiàn)不是特殊角,但它是特殊角的一半,若構(gòu)造有特殊角的直角三角形,則可能解決這個問題于是小天嘗試著在CB邊上截取,連接如圖,通過構(gòu)造有特殊角的直角三角形,經(jīng)過推理和計算使問題得到解決.
請回答:______.
參考小天思考問題的方法,解決問題:
如圖3,在等腰中,,,請借助,構(gòu)造出的角,并求出該角的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若點P和點關(guān)于y軸對稱,點和點關(guān)于直線l對稱,則稱點是點P關(guān)于y軸,直線l的二次對稱點.
如圖1,點.
若點B是點A關(guān)于y軸,直線:的二次對稱點,則點B的坐標(biāo)為______;
若點是點A關(guān)于y軸,直線:的二次對稱點,則a的值為______;
若點是點A關(guān)于y軸,直線的二次對稱點,則直線的表達式為______;
如圖2,的半徑為若上存在點M,使得點是點M關(guān)于y軸,直線:的二次對稱點,且點在射線上,b的取值范圍是______;
是x軸上的動點,的半徑為2,若上存在點N,使得點是點N關(guān)于y軸,直線:的二次對稱點,且點在y軸上,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AB=4,點C在半圓上,OC⊥AB,垂足為點O,P為半圓上任意一點,過P點作PE⊥OC于點E,設(shè)△OPE的內(nèi)心為M,連接OM、PM.當(dāng)點P在半圓上從點B運動到點A時,內(nèi)心M所經(jīng)過的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;
(2)當(dāng)﹣<x<2時,y<0;
(3)a﹣b+c=0;
(4)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè)
則其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=4.
(1)求拋物線的函數(shù)表達式.
(2)當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點P從A出發(fā),以每秒2厘米的速度向B運動,點Q從C同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應(yīng)停止運動,那么,當(dāng)以A、P、Q為頂點的三角形與△ABC相似時,運動時間是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com