【題目】在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分線AF交CD于點(diǎn)E,交BC于F,CM⊥AF于M,CM的延長(zhǎng)線交AB于點(diǎn)N.
(1)求證:EM=FM;
(2)求證:AC=AN.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)根據(jù)題意可得∠AED+∠DAE=90°,∠CFE+∠CAE=90°,因?yàn)?/span>∠BAC的平分線AF交CD于E,所以∠DAE=∠CAE,即∠AED=∠CFE,然后根據(jù)等腰三角形判定與性質(zhì)即可得證;
(2)通過“角邊角”證明△AMN≌△AMC,即可得AC=AN.
(1)證明:∵∠ACB=90°,CD⊥AB,
∴∠ADC=90°,
∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,
又∵∠BAC的平分線AF交CD于E,
∴∠DAE=∠CAE,
∴∠AED=∠CFE,
又∵∠AED=∠CEF,
∴∠CEF=∠CFE,
又∵CM⊥AF,
∴EM=FM.
(2)證明:∵CN⊥AF,
∴∠AMC=∠AMN=90°,
在△AMN和△AMC中,
,
∴△AMN≌△AMC(SAS),
∴AC=AN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新化到長(zhǎng)沙的距離約為200km,小王開著小轎車,張師傅開著大貨車都從新化去長(zhǎng)沙,小王比張師傅晚出發(fā)20分鐘,最后兩車同時(shí)到達(dá)長(zhǎng)沙.已知小轎車的速度是大貨車速度的1.2倍,求小轎車和大貨車的速度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠C=65°,AD 為 BC 邊上的高.
(1)求∠CAD 的度數(shù);
(2)若∠B=45°,AE 平分∠BAC,求∠EAD 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=22.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù)____,點(diǎn)P表示的數(shù)____(用含t的代數(shù)式表示);
(2)若動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?(列一元一次方程解應(yīng)用題)
(3)若動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問 秒時(shí)P、Q之間的距離恰好等于2(直接寫出答案)
(4)思考在點(diǎn)P的運(yùn)動(dòng)過程中,若M為AP的中點(diǎn),N為PB的中點(diǎn).線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠A=90°,E是AD邊中點(diǎn),CE平分∠BCD.
(1)求證:BE平分∠ABC;
(2)若AB=2,CD=1,求BC長(zhǎng);
(3)若△BCE的面積為6,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學(xué)校捐書活動(dòng),為了解職工的捐數(shù)量,采用隨機(jī)抽樣的方法抽取30名職工作為樣本,對(duì)他們的捐書量進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計(jì)圖,由圖中給出的信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)估計(jì)該單位750名職工共捐書多少本?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com