【題目】新化到長(zhǎng)沙的距離約為200km,小王開著小轎車,張師傅開著大貨車都從新化去長(zhǎng)沙,小王比張師傅晚出發(fā)20分鐘,最后兩車同時(shí)到達(dá)長(zhǎng)沙.已知小轎車的速度是大貨車速度的1.2倍,求小轎車和大貨車的速度各是多少?
【答案】解:設(shè)大貨車的速度是x千米/時(shí),則小轎車的速度是1.2x/時(shí), 由題意,得
﹣ = ,
解得x=100,
經(jīng)檢驗(yàn),x=100是原方程的解,且符合題意,
則1.2x=120.
答:大貨車的速度為100km/h,小轎車的速度為120km/h.
【解析】設(shè)大貨車的速度是x千米/時(shí),則小轎車的速度是1.2x/時(shí),根據(jù)時(shí)間關(guān)系列出方程,解方程即可.
【考點(diǎn)精析】掌握分式方程的應(yīng)用是解答本題的根本,需要知道列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)①畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1 , 并直接寫出C1點(diǎn)坐標(biāo);
②以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2 , 并直接寫出C2點(diǎn)坐標(biāo);
(2)如果點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫出經(jīng)過(1)②的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(4,5)、B(1,0)、C(4,0).
(1)畫出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1,并寫出A1點(diǎn)的坐標(biāo);
(2)在y軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,并求出點(diǎn)P的坐標(biāo)及△PAB的周長(zhǎng)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD 相交于點(diǎn)O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點(diǎn)引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△ADE都是等腰直角三角形, ∠BAC=∠DAE=90°.
(1)如圖1,點(diǎn)D、E在AB、AC上,則BD,CE滿足怎樣的數(shù)量關(guān)系和位置關(guān)系?(直接寫出答案)
(2)如圖2,點(diǎn)D在△ABC內(nèi)部, 點(diǎn)E在△ABC外部,連結(jié)BD, CE, 則BD,CE滿足怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)說明理由.
(3)如圖3,點(diǎn)D,E都在△ABC外部,連結(jié)BD, CE, CD, EB,BD, 與CE相交于H點(diǎn). 若BD=,求四邊形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣6x+c與x軸交于點(diǎn)A、B(5,0),與y軸交于點(diǎn)C(0,5),點(diǎn)P是拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t,連接PB、PC,PC與x軸交于點(diǎn)D,過點(diǎn)P作y軸的平行線交x軸于點(diǎn)H、交直線BC于點(diǎn)E.
(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)若點(diǎn)P在第四象限,則△BPC的面積有值(填“最大”或“最小”),并求出其值;
(3)當(dāng)t<5時(shí),△BPE能否為等腰三角形?若能,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30o,點(diǎn)A1、A2、A3 在射線ON上,點(diǎn)B1、B2、B3…..在射線OM上,△A1B1A2. △A2B2A3、△A3B3A4……均為等邊三角形,若OA1=l,則△A6B6A7 的邊長(zhǎng)為【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD被直線EF所截,交點(diǎn)分別為G,H, ∠CHG=∠DHG=∠AGE.
(1)CD與EF有怎樣的位置關(guān)系?請(qǐng)說明理由.
(2)求∠CHG的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分線AF交CD于點(diǎn)E,交BC于F,CM⊥AF于M,CM的延長(zhǎng)線交AB于點(diǎn)N.
(1)求證:EM=FM;
(2)求證:AC=AN.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com