【題目】如圖,在直角坐標系中,已知點 A(﹣3,0),B(0,4),對△OAB 連續(xù)作旋轉變換,依次得到三角形(1),(2),(3),(4)…,則三角形(2019)的直角頂點的坐標為_____

【答案】(8076,0)

【解析】

先利用勾股定理計算出AB,從而得到△ABC的周長為12,根據(jù)旋轉變換可得△OAB的旋轉變換為每3次一個循環(huán),由于2019=3×673,于是可判斷三角形2019與三角形1的狀態(tài)一樣,然后計算673×12即可得到三角形2019的直角頂點坐標.

解:∵A(-3,0),B(0,4),
∴OA=3,OB=4,
∴AB==5,
∴△ABC的周長=3+4+5=12,
∵△OAB每連續(xù)3次后與原來的狀態(tài)一樣,
∵2019=3×673,
∴三角形2019與三角形1的狀態(tài)一樣,
∴三角形2019的直角頂點的橫坐標=673×12=8076,
∴三角形2019的直角頂點坐標為(8076,0).
故答案為(8076,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知.上以的速度由點向點運動,同時點上由點向點運動,它們運動的時間為

1)如圖①,,,若點的運動速度與點的運動速度相等,當時,是否全等,請說明理由,并判斷此時線段和線段的位置關系;

2)如圖②,將圖①中的“,”為改“”,其他條件不變.設點的運動速度為,是否存在實數(shù),使得全等?若存在,求出相應的、的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,等腰直角中,,,現(xiàn)將該三角形放置在平面直角坐標系中,點坐標為,點坐標為.

1)過點軸,求的長及點的坐標;

2)連接,若為坐標平面內異于點的點,且以、、為頂點的三角形與全等,請直接寫出滿足條件的點的坐標;

3)已知,試探究在軸上是否存在點,使是以為腰的等腰三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l:y=x﹣與x軸交于點B1,以OB1為邊長作等邊三角形A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點A2017的橫坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,測量人員在山腳A處測得山頂B的仰角為45°,沿著仰角為30°的山坡前進1000米到達D處,在D處測得山頂B的仰角為60°,求山的高度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O 的直徑 AB 垂直弦 CD 于點 E,連接 CO 并延長交 AD于點 F,且 CF⊥AD

(1)求證:點 E 是 OB 的中點;

(2)若 AB=12,求 CD 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A1,0),C0,2).

1)求拋物線的表達式;

2)在拋物線的對稱軸上是否存在點P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;

3)點E時線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且連接AC,AF,過點CCDAFAF延長線于點D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以點A為圓心,AB長為半徑作弧交ACM,分別以B、M為圓心,以大于BM長為半徑作弧,兩弧相交于點N,射線ANBC相交于D,則AD的長為_____

查看答案和解析>>

同步練習冊答案