【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;
(3)當(dāng)△ADE是等腰三角形時(shí),求AE的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)y=x+2(0<x<2)(3)當(dāng)△ADE是等腰三角形時(shí),AE=4﹣2或.
【解析】
試題分析:(1)根據(jù)兩角相等證明:△ABD∽△DCE;
(2)如圖1,作高AF,根據(jù)直角三角形30°的性質(zhì)求AF的長(zhǎng),根據(jù)勾股定理求BF的長(zhǎng),則可得BC的長(zhǎng),根據(jù)(1)中的相似列比例式可得函數(shù)關(guān)系式,并確定取值;
(3)分三種情況進(jìn)行討論:①當(dāng)AD=DE時(shí);②當(dāng)AE=ED時(shí);③當(dāng)AD=AE時(shí),討論即可得到答案.
試題解析:(1)∵△ABC是等腰三角形,且∠BAC=120°,
∴∠ABD=∠ACB=30°,
∴∠ABD=∠ADE=30°,
∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,
∴∠EDC=∠DAB,
∴△ABD∽△DCE;
(2)如圖1,∵AB=AC=2,∠BAC=120°,
過(guò)A作AF⊥BC于F,
∴∠AFB=90°,
∵AB=2,∠ABF=30°,
∴AF=AB=1,
∴BF=,
∴BC=2BF=2,
則DC=2﹣x,EC=2﹣y,
∵△ABD∽△DCE,
∴,
∴,
化簡(jiǎn)得:y=x+2(0<x<2);
(3)當(dāng)AD=DE時(shí),如圖2,
由(1)可知:此時(shí)△ABD∽△DCE,
則AB=CD,即2=2﹣x,
x=2﹣2,代入y=x+2,
解得:y=4﹣2,即AE=4﹣2,
當(dāng)AE=ED時(shí),如圖3,
∠EAD=∠EDA=30°,∠AED=120°,
∴∠DEC=60°,∠EDC=90°,
則ED=EC,即y=(2﹣y),
解得:y=,即AE=,
當(dāng)AD=AE時(shí),
∠AED=∠EDA=30°,∠EAD=120°,
此時(shí)點(diǎn)D與點(diǎn)B重合,不符合題意,此情況不存在,
∴當(dāng)△ADE是等腰三角形時(shí),AE=4﹣2或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn),頂點(diǎn)為點(diǎn),點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),是過(guò)點(diǎn)且垂直于軸的直線,過(guò)作,垂足為,連接.
求拋物線的解析式,并寫(xiě)出其頂點(diǎn)的坐標(biāo);
①當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)處時(shí),計(jì)算:________,________,由此發(fā)現(xiàn),________(填“”、“”或“”);
②當(dāng)點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),猜想與有什么數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN是一條東西方向的海岸線,在海岸線上的A處測(cè)得一海島在南偏西32°的方向上,向東走過(guò)780米后到達(dá)B處,測(cè)得海島在南偏西37°的方向,求小島到海岸線的距離.
(參考數(shù)據(jù):tan37°= cot53°≈0.755,cot37°= tan53°≈1.327,tan32°= cot58°≈0.625,cot32°= tan58°≈1.600.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC=45°,F是高AD與高BE的交點(diǎn).
(1)求證:△ADC≌△BDF.
(2)連接CF,若CD=4,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長(zhǎng)方形OABC.
(1)求點(diǎn)A、C的坐標(biāo);
(2)將△ABC對(duì)折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得△APC與△ABC全等?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.
(1)求作∠ABC的平分線,分別交AD,AC于E,F兩點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)證明:AE=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,經(jīng)過(guò)點(diǎn)C的⊙O與斜邊AB相切于點(diǎn)P.
(1)如圖①,當(dāng)點(diǎn)O在AC上時(shí),試說(shuō)明2∠ACP=∠B;
(2)如圖②,AC=8,BC=6,當(dāng)點(diǎn)O在△ABC外部時(shí),求CP長(zhǎng)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個(gè)頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為創(chuàng)建國(guó)家衛(wèi)生城市,需要購(gòu)買(mǎi)甲、乙兩種類(lèi)型的分類(lèi)垃圾桶(如圖所示),據(jù)調(diào)查該城市的A、B、C三個(gè)社區(qū)積極響應(yīng)號(hào)并購(gòu)買(mǎi),具體購(gòu)買(mǎi)的數(shù)和總價(jià)如表所示.
社區(qū) | 甲型垃圾桶 | 乙型垃圾桶 | 總價(jià) |
A | 10 | 8 | 3320 |
B | 5 | 9 | 2860 |
C | a | b | 2820 |
(1)運(yùn)用本學(xué)期所學(xué)知識(shí),列二元一次方程組求甲型垃圾桶、乙型垃圾桶的單價(jià)每套分別是多少元?
(2)按要求各個(gè)社區(qū)兩種類(lèi)型的垃圾桶都要有,則a= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com