【題目】如圖,MN是一條東西方向的海岸線,在海岸線上的A處測(cè)得一海島在南偏西32°的方向上,向東走過(guò)780米后到達(dá)B處,測(cè)得海島在南偏西37°的方向,求小島到海岸線的距離.
(參考數(shù)據(jù):tan37°= cot53°≈0.755,cot37°= tan53°≈1.327,tan32°= cot58°≈0.625,cot32°= tan58°≈1.600.)
【答案】6000
【解析】試題分析:如圖:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同樣在Rt△BCD中,可得BD= 0.755CD,再根據(jù)AB=BD-CD=780,代入進(jìn)行求解即可得.
試題解析:如圖:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,
由已知可得:∠ACD=32°,∠BCD =37°,
在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,
在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,
∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=6000,
答:小島到海岸線的距離是6000米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過(guò)點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.
(1)求證:四邊形DEFG為菱形;
(2)若CD=8,CF=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的個(gè)數(shù)是( )
①若某數(shù)的相反數(shù)的絕對(duì)值與其絕對(duì)值的相反數(shù)相等,則此數(shù)為零;
②若a≠0,b≠0,則a+b≠0;
③一個(gè)有理數(shù)的絕對(duì)值一定大于這個(gè)數(shù);
④近似數(shù)2.030有4個(gè)有效數(shù)字,它們分別是2,0,3,0;
⑤若2.009≈4.036,則2009≈4036000;
⑥當(dāng)a≠1時(shí),|a-1|與|1-a|的差沒(méi)有倒數(shù).
A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,點(diǎn)為軸上一動(dòng)點(diǎn),.
(1)求點(diǎn)的坐標(biāo);
(2)不論點(diǎn)運(yùn)動(dòng)到直線上的任何位置(不包括點(diǎn)),三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請(qǐng)利用所學(xué)知識(shí)找出并證明,如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩人沿相同的路線由地到地勻速前進(jìn),,兩地間的路程為.他們前進(jìn)的路程為,甲出發(fā)后的時(shí)間為,甲,乙前進(jìn)的路程與時(shí)間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說(shuō)法不正確的是( )
A.甲的速度是B.乙出發(fā)后與甲相遇
C.乙的速度是D.甲比乙晚到地
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ADBC,BC,垂足分別為D、F,23180,試說(shuō)明:GDCB,請(qǐng)補(bǔ)充說(shuō)明過(guò)程,并在括號(hào)內(nèi)填上相應(yīng)的理由。
解:ADBC,EFBC(已知)
ADBEFB90( ① ),
EF//AD( ② ),
③ 2180( ④ ),
又23180(已知),
13( ⑤ ),
AB// ⑥ ( ⑦ ),
∴∠GDC=∠B( ⑧ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于X的一元二次方程為: 。
(1)當(dāng)方程有兩實(shí)數(shù)根時(shí),求的取值范圍;
(2)任取一個(gè)值,求出方程的兩個(gè)不相等實(shí)數(shù)根。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求證:三角形三個(gè)內(nèi)角的和等于180°.
(2)閱讀材料并回答問(wèn)題:
如圖,把△ABC的一邊BC延長(zhǎng),得到∠ACD.像這樣,三角形的一邊與另一邊的延長(zhǎng)線組成的角,叫做三角形的“外角”,在每個(gè)頂點(diǎn)處取這個(gè)三角形的一個(gè)外角,它們的和叫做這個(gè)三角形的“外角和”.補(bǔ)全圖形并求△ABC的“外角和”.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com