【題目】如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個(gè)頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____.
【答案】
【解析】
過(guò)點(diǎn)A作AD⊥l1于D,過(guò)點(diǎn)B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對(duì)邊比斜邊列式計(jì)算即可得解.
如圖,過(guò)點(diǎn)A作AD⊥l1于D,過(guò)點(diǎn)B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,
∵∠CAD+∠ACD=90°,
∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
在等腰直角△ABC中,AC=BC,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE=1,
∴AD=2,
∴AC=,
∴AB=AC=,
∴sinα=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點(diǎn)E為CD的中點(diǎn),射線BE交AD的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:四邊形BCFD是菱形;
(2)若AD=1,BC=2,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;
(3)當(dāng)△ADE是等腰三角形時(shí),求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖①由4根火柴棍圍成;圖②由12根火柴棍圍成;圖③由24根火柴棍圍成;…按此規(guī)律,則第⑥個(gè)圖形由( )根火柴棍圍成.
A. 60 B. 72 C. 84 D. 112
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)是上一點(diǎn),且平分,點(diǎn)是上一點(diǎn),以為直徑的經(jīng)過(guò)點(diǎn).
求證:是的切線;
若的面積的面積,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD中,G為BC中點(diǎn),點(diǎn)E在AD邊上,且∠1=∠2.
(1)求證:E是AD中點(diǎn);
(2)若F為CD延長(zhǎng)線上一點(diǎn),連接BF,且滿足∠3=∠2,求證:CD=BF+DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=78°,∠B=82°,則∠C=_________,∠D=__________
(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):
①小紅畫(huà)了一個(gè)“等對(duì)角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請(qǐng)你證明此結(jié)論;
②由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例(提示:舉反例可畫(huà)圖并說(shuō)明)
(3)已知:在“等對(duì)角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=,AD=,求對(duì)角線AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過(guò)點(diǎn)A作⊙O的切線交OC的延長(zhǎng)線于點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒中有若干枚黑棋和白棋,這些棋除顏色外無(wú)其他差別,現(xiàn)讓學(xué)生進(jìn)行摸棋試驗(yàn):每次摸出一枚棋,記錄顏色后放回?fù)u勻.重復(fù)進(jìn)行這樣的試驗(yàn)得到以下數(shù)據(jù):
摸棋的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次數(shù)m | 24 | 51 | 76 | 124 | 201 | 250 |
摸到黑棋的頻率(精確到0.001) | 0.240 | 0.255 | 0.253 | 0.248 | 0.251 | 0.250 |
(1)根據(jù)表中數(shù)據(jù)估計(jì)從盒中摸出一枚棋是黑棋的概率是 ;(精確到0.01)
(2)若盒中黑棋與白棋共有4枚,某同學(xué)一次摸出兩枚棋,請(qǐng)計(jì)算這兩枚棋顏色不同的概率,并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com