【題目】已知拋物線和拋物線為正整數(shù)).

1)拋物線軸的交點______,頂點坐標(biāo)______;

2)當(dāng)時,請解答下列問題.

①直接寫出軸的交點______,頂點坐標(biāo)______,請寫出拋物線,的一條相同的圖象性質(zhì)______;

②當(dāng)直線,相交共有4個交點時,求的取值范圍.

3)若直線)與拋物線,拋物線為正整數(shù))共有4個交點,從左至右依次標(biāo)記為點,點,點,點,當(dāng)時,求出,之間滿足的關(guān)系式.

【答案】1,;;(2)①;;對稱軸為直線(或與軸交點為,);②,且,;(3

【解析】

1)根據(jù),可以求得該拋物線與x軸的交點和該拋物線的頂點坐標(biāo),本題得以解決;

2)①將n1,代入yn,據(jù)此可以求得該拋物線與x軸的交點和該拋物線的頂點坐標(biāo),然后根據(jù)(1)中的結(jié)果,寫出拋物線yyn的一條相同的圖象性質(zhì)即可;

②求出直線相交只有1個交點時m的值,直線相交只有1個交點時m的值,過點m的值,過點m的值,根據(jù)函數(shù)圖象,從而可以得到當(dāng)直線yxmy,yn相交共有4個交點時,m的取值范圍;

3)根據(jù)一元二次方程根與系數(shù)的關(guān)系求出,,根據(jù)可得,進(jìn)而可以求出kn之間滿足的關(guān)系式.

解:(1)∵拋物線,

∴當(dāng)y0時,x13,x21,該拋物線的頂點坐標(biāo)為(1,4),

∴拋物線yx22x3x軸的交點為(3,0),(10),

故答案為:(1,0),(3,0);(14);

2)①當(dāng)n1時,

拋物線

∴當(dāng)y10時,x33,x41,該拋物線的頂點坐標(biāo)為(1),

∴該拋物線與x軸的交點為(3,0),(10),

拋物線y,yn的一條相同的圖象性質(zhì)是對稱軸都是x1(或與x軸的交點都是(1,0),(3,0));

②當(dāng)直線相交只有1個交點時,

,得

,

當(dāng)直線相交只有1個交點時,

,得,

,

.

,代入,得;把,代入,得,

,且,;

3)由,得

,

,得,

,

,

化簡得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在證明“已知:如圖,,.求證:.”時,兩位同學(xué)的證法如下:

證法一:由勾股定理,得

,

的面積的面積

的面積的面積

證法二:

,

,,

1)反思:上述兩位同學(xué)的證法中,有一位同學(xué)已完成的證明部分有一處錯誤,請把錯誤序號寫出.

2)請你選擇其中一種證法,完成證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點,已知DEF的面積為1,則平行四邊形ABCD的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB4,AD10EAD的一點,且AE2,MAB上一點,射線MECD的延長線于點F,EGMEBC于點G,連接MGFG,FGAD于點N

1)當(dāng)點MAB中點時,則DF   ,FG   .(直接寫出答案)

2)在整個運動過程中,的值是否會變化,若不變,求出它的值;若變化,請說明理由.

3)若△EGN為等腰三角形時,請求出所有滿足條件的AM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年某省實施人才引進(jìn)政策,對引進(jìn)人才給予資金扶持和落戶優(yōu)惠,海內(nèi)外英才紛紛向組織部門遞交報名表.為了了解報名人員年齡結(jié)構(gòu)情況,抽樣調(diào)查了50名報名人員的年齡(單位:歲),將抽樣得到的數(shù)據(jù)分成5組,統(tǒng)計如下表:

分組

頻數(shù)(人數(shù))

頻率

30歲以下

0.16

大于30歲不大于40

20

0.40

大于40歲不大于50

14

大于50歲不大于60

6

0.12

60歲以上

1)請將表格中空格填寫完整;

2)樣本數(shù)據(jù)的中位數(shù)落在_____,若把樣本數(shù)據(jù)制成扇形統(tǒng)計圖,則“大于30歲不大于40歲”的圓心角為______度;

3)如果共有2000人報名,請你根據(jù)上面數(shù)據(jù),估計年齡不大于40歲的報名人員會有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】象棋是棋類益智游戲,中國象棋在中國有著三千多年的歷史,由于用具簡單,趣味性強(qiáng),成為流行極為廣泛的棋藝活動.李凱和張萌利用象棋棋盤和棋子做游戲.李凱將四枚棋子反面朝上放在棋盤上,其中有兩個、一個、一個,張萌隨機(jī)從這四枚棋子中摸一枚棋子,記下正漢字,然后再從剩下的三枚棋子中隨機(jī)摸一枚.

1)求張萌第一次摸到的棋子正面上的漢字是的概率;

2)游戲規(guī)定:若張萌兩次摸到的棋子中有,則張萌勝;否則,李凱勝.請你用樹狀圖或列表法求李凱勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“機(jī)動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校共有3000人,數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結(jié)合圖中所給的信息解答下列問題:

1)扇形統(tǒng)計圖中C所對應(yīng)的扇形圓心角度數(shù)為   ;估計全校非常了解交通法規(guī)的有   人.

2)補(bǔ)全條形統(tǒng)計圖;

3)學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求丙和丁兩名同學(xué)同事被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

如圖①,在中中,,,,過點,將繞點逆時針方向旋轉(zhuǎn),得到,連接,,記旋轉(zhuǎn)角為

1)問題發(fā)現(xiàn)

如圖②,當(dāng)時,__________;如圖③,當(dāng)時,__________

2)拓展探究

試判斷:當(dāng)時,的大小有無變化?請僅就圖④的情形給出證明.

3)問題解決

如圖⑤,當(dāng)繞點逆時針旋轉(zhuǎn)至點落在邊上時,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于兩點,,交軸于點,對稱軸是直線

1)求拋物線的解析式及點的坐標(biāo);

2)連接是線段上一點,關(guān)于直線的對稱點正好落在上,求點的坐標(biāo);

3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過軸的垂線交拋物線于點,交線段于點.設(shè)運動時間為)秒.若相似,請求出的值.

查看答案和解析>>

同步練習(xí)冊答案