【題目】已知△ABC為等邊三角形,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,點(diǎn)C重合).以AD為邊作等邊三角形ADE,連接CE

(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí).求證:△ABD≌△ACE;

(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)寫出BC,DC,CE之間存在的數(shù)量關(guān)系,并寫出證明過程.

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE60°,ABBCAC,ADDEAE,進(jìn)而就可以得出△ABD≌△ACE
2)由等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE60°,ABBCACADDEAE,進(jìn)而就可以得出△ABD≌△ACE,就可以得出BCCDCE

1)∵△ABC和△ADE是等邊三角形,
∴∠BAC=∠DAE60°,ABBCAC,ADDEAE
∴∠BACDAC=∠DAEDAC,
∴∠BAD=∠EAC
在△ABD和△ACE,
∴△ABD≌△ACESAS).
2BCCDCE
∵△ABC和△ADE是等邊三角形,
∴∠BAC=∠DAE60°ABBCAC,ADDEAE
∴∠BAC+∠DAC=∠DAE+∠DAC
∴∠BAD=∠EAC
在△ABD和△ACE,
∴△ABD≌△ACESAS).
BDCE
BDBCCD
CEBCCD;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(2m+1)x+m﹣3.

(1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值;

(2)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍;

(3)若這個(gè)函數(shù)是一次函數(shù),且圖象不經(jīng)過第四象限,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,過對(duì)角線上一點(diǎn),,且,則( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn),與軸負(fù)半軸交于點(diǎn),與軸交于點(diǎn),且.

(1)求拋物線的解析式;

(2)點(diǎn)軸上,且,求點(diǎn)的坐標(biāo);

(3)點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱軸上,是否存在以點(diǎn),,為頂點(diǎn)的四邊形是平行四邊形?若存在。求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P在∠MON的角平分線上,過點(diǎn)POP的垂線交OM,ONC、D,PAOMPBON,垂足分別為AB,EPBD,則下列結(jié)論錯(cuò)誤的是( 。

A.CPPDB.PAPBC.PEOED.OBCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是求作∠AOB的角平分線的尺規(guī)作圖過程.

已知:如圖,鈍角∠AOB.

求作:∠AOB的角平分線.

作法:

①在OAOB上,分別截取OD、OE,使OD=OE;

②分別以D、E為圓心,大于DE的長(zhǎng)為半徑作弧,在∠AOB內(nèi),兩弧交于點(diǎn)C;

③作射線OC.

所以射線OC就是所求作的∠AOB的角平分線.

請(qǐng)回答:該尺規(guī)作圖的依據(jù)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,∠CAB=90°,F(xiàn)AB邊上一點(diǎn),作射線CF,過點(diǎn)BBGCF于點(diǎn)G,連接AG.

(1)求證:∠ABG=ACF;

(2)用等式表示線段CG,AG,BG之間的等量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)決定購(gòu)置一批共享單車,經(jīng)市場(chǎng)調(diào)查得知,購(gòu)買3輛男式單車與4輛女式單車費(fèi)用相同,購(gòu)買5輛男式單車與4輛女式單車共需1600元.

(1)求男式單車和女式單車每輛分別是多少元?

(2)該社區(qū)要求男式單車比女式單車多4輛,兩種單車至少需要22輛,購(gòu)置兩種單車的費(fèi)用不超過5000元,問該社區(qū)有幾種購(gòu)置方案?怎樣的購(gòu)置才能使所需總費(fèi)用最低?最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

是這個(gè)方程的一個(gè)根,求的值和方程的另一個(gè)根;

求證:對(duì)于任意實(shí)數(shù),這個(gè)方程都有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案