【題目】如圖,在等腰直角△ABC中,∠CAB=90°,F(xiàn)是AB邊上一點(diǎn),作射線CF,過(guò)點(diǎn)B作BG⊥CF于點(diǎn)G,連接AG.
(1)求證:∠ABG=∠ACF;
(2)用等式表示線段CG,AG,BG之間的等量關(guān)系,并證明.
【答案】(1)證明見(jiàn)解析;(2)CG=AG+BG,證明見(jiàn)解析.
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)解答即可;
(2)在CG上截取CH=BG,連接AH,利用全等三角形的判定和性質(zhì)解答即可.
(1)證明:
∵∠CAB=90°.
∵BG⊥CF于點(diǎn)G,
∴∠BGF=∠CAB=90°.
∵∠GFB=∠CFA
∴∠ABG=∠ACF
(2)CG=AG+BG
在CG上截取CH=BG,連接AH,
∵△ABC是等腰直角三角形,
∴∠CAB=90°,AB=AC.
∵∠ABG=∠ACH.
∴△ABG≌△ACH,
∴AG=AH,∠GAB=∠HAC.
∴∠GAH=90°.
∴AG2+AH2=GH2.
∴GH=AG,
∴CG=CH+GH=AG+BG,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)E為邊AB上任意一點(diǎn),點(diǎn)D在邊CB的延長(zhǎng)線上,且ED=EC.
(1)當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí)(如圖1),則有AE DB(填“>”“<”或“=”);
(2)猜想AE與DB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
問(wèn)題情境:在數(shù)學(xué)活動(dòng)課上,老師出示了這樣一個(gè)問(wèn)題:如圖1,在矩形ABCD中,AD=2AB,E是AB延長(zhǎng)線上一點(diǎn),且BE=AB,連接DE,交BC于點(diǎn)M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AM與DE的位置關(guān)系.
探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:
證明:∵BE=AB,∴AE=2AB.
∵AD=2AB,∴AD=AE.
∵四邊形ABCD是矩形,∴AD∥BC.
∴.(依據(jù)1)
∵BE=AB,∴.∴EM=DM.
即AM是△ADE的DE邊上的中線,
又∵AD=AE,∴AM⊥DE.(依據(jù)2)
∴AM垂直平分DE.
反思交流:
(1)①上述證明過(guò)程中的“依據(jù)1”“依據(jù)2”分別是指什么?
②試判斷圖1中的點(diǎn)A是否在線段GF的垂直平分線上,請(qǐng)直接回答,不必證明;
(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進(jìn)行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點(diǎn)G在線段BC的垂直平分線上,請(qǐng)你給出證明;
探索發(fā)現(xiàn):
(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點(diǎn)C,點(diǎn)B都在線段AE的垂直平分線上,除此之外,請(qǐng)觀察矩形ABCD和正方形CEFG的頂點(diǎn)與邊,你還能發(fā)現(xiàn)哪個(gè)頂點(diǎn)在哪條邊的垂直平分線上,請(qǐng)寫(xiě)出一個(gè)你發(fā)現(xiàn)的結(jié)論,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC為等邊三角形,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,點(diǎn)C重合).以AD為邊作等邊三角形ADE,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí).求證:△ABD≌△ACE;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)寫(xiě)出BC,DC,CE之間存在的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)造了一幅“弦圖”后人稱其為“趙爽弦圖”(如圖1).圖2是弦圖變化得到,它是用八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=10,求S2的值.以下是求S2的值的解題過(guò)程,請(qǐng)你根據(jù)圖形補(bǔ)充完整.
解:設(shè)每個(gè)直角三角形的面積為S
S1﹣S2= (用含S的代數(shù)式表示)①
S2﹣S3= (用含S的代數(shù)式表示)②
由①,②得,S1+S3= 因?yàn)?/span>S1+S2+S3=10,
所以2S2+S2=10.
所以S2=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A(m,0),B(0,n),以B點(diǎn)為直角頂點(diǎn)在第二象限作等腰直角△ABC,則C點(diǎn)的坐標(biāo)為_____.(用字母m、n表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在等邊△ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,,D為BC的中點(diǎn),過(guò)點(diǎn)C作于點(diǎn)G,過(guò)點(diǎn)B作于點(diǎn)B,交CG的延長(zhǎng)線于點(diǎn)F,連接DF交AB于點(diǎn)E.
(1)求證:;
(2)求證:AB垂直平分DF;
(3)連接AF,試判斷的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某加工廠投資興建2條全自動(dòng)生產(chǎn)線和1條半自動(dòng)生產(chǎn)線共需資金26萬(wàn)元,而投資興建1條全自動(dòng)生產(chǎn)線和3條半自動(dòng)生產(chǎn)線共需資金28萬(wàn)元
(1)求每條全自動(dòng)生產(chǎn)線和半自動(dòng)生產(chǎn)線的成本各為多少萬(wàn)元?
(2)據(jù)預(yù)測(cè),2015年每條全自動(dòng)生產(chǎn)線的毛利潤(rùn)為26萬(wàn)元,每條半自動(dòng)生產(chǎn)線的毛利潤(rùn)為16萬(wàn)元.這-年,該加工廠共投資興建10條生產(chǎn)線,若想獲得不少于120萬(wàn)元的純利潤(rùn),則2015年該加工廠至少需投資興建多少條全自動(dòng)生產(chǎn)線?(純利潤(rùn)=毛利潤(rùn)-成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com