【題目】如圖,點P在∠MON的角平分線上,過點P作OP的垂線交OM,ON于C、D,PA⊥OM.PB⊥ON,垂足分別為A、B,EP∥BD,則下列結(jié)論錯誤的是( 。
A.CP=PDB.PA=PBC.PE=OED.OB=CD
【答案】D
【解析】
依據(jù)全等三角形的判定進(jìn)而性質(zhì)(ASA)、角平分線的性質(zhì)以及等腰三角形的性質(zhì)進(jìn)行分析,即可得到正確結(jié)論,進(jìn)而得出答案.
∵點P在∠MON的角平分線上,
∴∠COP=∠DOP,
∵CD⊥OP,
∴∠CPO=∠DPO,
又∵OP=OP,
∴△COP≌△DOP(ASA),
∴CP=DP,故A選項正確;
∵OP平分∠MON,且PA⊥OM,PB⊥ON,
∴PA=PB,故B選項正確;
∵EP∥BD,
∴∠EPO=∠POB,
又∵∠COP=∠DOP,
∴∠EOP=∠EPO,
∴EO=EP,故C選項正確;
而OB=CD不一定成立,故D選項錯誤;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=﹣2x2+4x+m+1,與x軸的公共點為A,B.
(1)如果A與B重合,求m的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點:
①當(dāng)m=﹣1時,求線段AB上整點的個數(shù);
②若設(shè)拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)整點的個數(shù)為n,當(dāng)1<n≤8時,結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是菱形的對角線、的交點,、分別是、的中點.下列結(jié)論:①;②四邊形也是菱形;③四邊形的面積為;④;⑤是軸對稱圖形.其中正確的結(jié)論有( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題情境:在數(shù)學(xué)活動課上,老師出示了這樣一個問題:如圖1,在矩形ABCD中,AD=2AB,E是AB延長線上一點,且BE=AB,連接DE,交BC于點M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AM與DE的位置關(guān)系.
探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:
證明:∵BE=AB,∴AE=2AB.
∵AD=2AB,∴AD=AE.
∵四邊形ABCD是矩形,∴AD∥BC.
∴.(依據(jù)1)
∵BE=AB,∴.∴EM=DM.
即AM是△ADE的DE邊上的中線,
又∵AD=AE,∴AM⊥DE.(依據(jù)2)
∴AM垂直平分DE.
反思交流:
(1)①上述證明過程中的“依據(jù)1”“依據(jù)2”分別是指什么?
②試判斷圖1中的點A是否在線段GF的垂直平分線上,請直接回答,不必證明;
(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進(jìn)行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點G在線段BC的垂直平分線上,請你給出證明;
探索發(fā)現(xiàn):
(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點C,點B都在線段AE的垂直平分線上,除此之外,請觀察矩形ABCD和正方形CEFG的頂點與邊,你還能發(fā)現(xiàn)哪個頂點在哪條邊的垂直平分線上,請寫出一個你發(fā)現(xiàn)的結(jié)論,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,AB⊥BE,垂足為B,DE⊥BE,垂足為E,且AC=DF,BF=EC.求證:
(1)△ABC≌△DEF;
(2)FG=CG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形,點D為直線BC上一動點(點D不與點B,點C重合).以AD為邊作等邊三角形ADE,連接CE.
(1)如圖1,當(dāng)點D在邊BC上時.求證:△ABD≌△ACE;
(2)如圖2,當(dāng)點D在邊BC的延長線上時,其他條件不變,請寫出BC,DC,CE之間存在的數(shù)量關(guān)系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)造了一幅“弦圖”后人稱其為“趙爽弦圖”(如圖1).圖2是弦圖變化得到,它是用八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=10,求S2的值.以下是求S2的值的解題過程,請你根據(jù)圖形補(bǔ)充完整.
解:設(shè)每個直角三角形的面積為S
S1﹣S2= (用含S的代數(shù)式表示)①
S2﹣S3= (用含S的代數(shù)式表示)②
由①,②得,S1+S3= 因為S1+S2+S3=10,
所以2S2+S2=10.
所以S2=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等邊△ABC中,點D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:中,.
求作邊上的垂直平分線,使得交于;將線段沿著的方向平移到線段(其中點平移到點,畫出平移后的線段;(要求用尺規(guī)作圖,不寫作法,保留作圖痕跡.)
連接、,試判斷四邊形是矩形嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com