【題目】如圖,在□ABCD中,已知AB>BC.
(1)實踐與操作:作∠ADC的平分線交AB于點E,在DC上截取DF=AD,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形AEFD的形狀,并給予證明.
【答案】(1)詳見解析;(2)四邊形ABEF是菱形,理由詳見解析.
【解析】試題分析:(1)由角平分線的作法容易得出結(jié)果,在AD上截取AF=AB,連接EF;畫出圖形即可;(2)由平行四邊形的性質(zhì)和角平分線得出∠BAE=∠AEB,證出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出結(jié)論.
試題解析:解:(1)如圖所示:
(2)四邊形ABEF是菱形;理由如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴BE=AB,
由(1)得:AF=AB,
∴BE=AF,
又∵BE∥AF,
∴四邊形ABEF是平行四邊形,
∵AF=AB,
∴四邊形ABEF是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】某縣為落實“精準扶貧惠民政策”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合作施工15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊合作完成.則甲、乙兩隊合作完成該工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于自變量x的不同的取值范圍,有著不同的對應關系,這樣的函數(shù)通常叫做分段函數(shù).它是一個函數(shù),而不是幾個函數(shù). 分段函數(shù)在自變量x的不同的取值范圍內(nèi),函數(shù)的表達式也不同.例如:是分段函數(shù).
當時,它是二次函數(shù);當時,它是正比例函數(shù).
(1)請在平面直角坐標系中畫出函數(shù)的圖象;
(2)求出y軸左側(cè)圖象的最低點的坐標;
(3)當時,求自變量x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△中,作,邊CD、BD交于點D,連接AD.
(1)請直接寫出的度數(shù);
(2)求的度數(shù);
(3)用等式表示線段AC、BD、CD三者之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級兩個班,各選派10名學生參加學校舉行的“漢字聽寫”大賽.各參賽選手成績的數(shù)據(jù)分析如下表所示,則以下判斷錯誤的是( )
A. 八(2)班的總分高于八(1)班 B. 八(2)班的成績比八(1)班穩(wěn)定
C. 八(2)班的成績集中在中上游 D. 兩個班的最高分在八(2)班
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校260名學生參加植樹活動,要求每人植4~7棵,活動結(jié)束后隨機抽查了若干名學生每人的植樹量,并分為四種類型, :4棵; :5棵; :6棵; :7棵,將抽查結(jié).果繪制成扇形圖(如圖1)和條形圖(如圖2).回答下列問題:
(1)在這次調(diào)查中類型有多少名學生?
(2)寫出被調(diào)查學生每人植樹量的眾數(shù)、中位數(shù);
(3)求被調(diào)查學生每人植樹量的平均數(shù),并估計這260名學生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com