【題目】在圓環(huán)形路上有均勻分布的四家工廠甲、乙、丙、丁,每家工廠都有足夠的倉庫供產(chǎn)品儲(chǔ)存.現(xiàn)要將所有產(chǎn)品集中到一家工廠的倉庫儲(chǔ)存,已知甲、乙、丙、丁四家工廠的產(chǎn)量之比為1235.若運(yùn)費(fèi)與路程、運(yùn)的數(shù)量成正比例,為使選定的工廠倉庫儲(chǔ)存所有產(chǎn)品時(shí)總的運(yùn)費(fèi)最省,應(yīng)選的工廠是(  )

A. B. C. D.

【答案】D

【解析】

本題可先設(shè)出相鄰兩個(gè)工程間的距離,以及甲、乙、丙、丁四廠的產(chǎn)量.然后分別計(jì)算出以甲、乙、丙、丁為倉庫時(shí),各自路程與運(yùn)量的乘積的和,由于運(yùn)費(fèi)與路程、運(yùn)量成正比,因此當(dāng)所求的和最小時(shí),運(yùn)費(fèi)最少,由此可判斷出正確的選項(xiàng).

設(shè)相鄰兩個(gè)廠之間的路程為a,甲的產(chǎn)量為b;

若倉庫在甲,那么(路程×運(yùn)量)的和為:2ab+6ab+5ab13ab;

若倉庫在乙,那么(路程×運(yùn)量)的和為:ab+3ab+10ab14ab;

若倉庫在丙,那么(路程×運(yùn)量)的和為:2ab+2ab+5ab9ab

若倉庫在丁,那么(路程×運(yùn)量)的和為:ab+4ab+3ab8ab

由于運(yùn)費(fèi)與路程、運(yùn)的數(shù)量成正比例,因此當(dāng)運(yùn)費(fèi)最少時(shí),應(yīng)選的工廠是。

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定,以二次函數(shù)y=ax2+bx+c的二次項(xiàng)系數(shù)a2倍為一次項(xiàng)系數(shù),一次項(xiàng)系數(shù)b為常數(shù)項(xiàng)構(gòu)造的一次函數(shù)y=2ax+b叫做二次函數(shù)y=ax2+bx+c子函數(shù),反過來,二次函數(shù)y=ax2+bx+c叫做一次函數(shù)y=2ax+b母函數(shù)

1)若一次函數(shù)y=2x-4是二次函數(shù)y=ax2+bx+c子函數(shù),且二次函數(shù)經(jīng)過點(diǎn)(3,0),求此二次函數(shù)的解析式及頂點(diǎn)坐標(biāo).

2)若子函數(shù)y=x-6母函數(shù)的最小值為1,求母函數(shù)的函數(shù)表達(dá)式.

3)已知二次函數(shù)y=-x2-4x+8子函數(shù)圖象直線lx軸、y軸交于C、D兩點(diǎn),動(dòng)點(diǎn)P為二次函數(shù)y=-x2-4x+8對(duì)稱軸右側(cè)上的動(dòng)點(diǎn),求PCD的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B04.

1)求這條拋物線的表達(dá)式;

2P是拋物線對(duì)稱軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=BAO,求點(diǎn)P的坐標(biāo);

3)將拋物線沿y軸向下平移m個(gè)單位,所得新拋物線與y軸交于點(diǎn)D,過點(diǎn)DDEx軸交新拋物線于點(diǎn)E,射線EO交新拋物線于點(diǎn)F,如果EO=2OF,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場

乙林場

購樹苗數(shù)量

銷售單價(jià)

購樹苗數(shù)量

銷售單價(jià)

不超過1000棵時(shí)

4/

不超過2000棵時(shí)

4/

超過1000棵的部分

3.8/

超過2000棵的部分

3.6/

設(shè)購買白楊樹苗x棵,到兩家林場購買所需費(fèi)用分別為y(元)、y(元).

1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費(fèi)用為   元,若都在乙林場購買所需費(fèi)用為   元;

2)分別求出yyx之間的函數(shù)關(guān)系式;

3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長.(結(jié)果保留整數(shù))

(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OAOC2EBC的中點(diǎn),以OE為直徑的⊙O′軸于D點(diǎn),過點(diǎn)DDF⊥AE于點(diǎn)F。

1)求OAOC的長;

2)求證:DF⊙O′的切線;

3)小明在解答本題時(shí),發(fā)現(xiàn)△AOE是等腰三角形。由此,他斷定:直線BC上一定存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形,且點(diǎn)P一定在⊙O′。你同意他的看法嗎?請(qǐng)充分說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)PPA,PB,分別與以OA為半徑的半圓切于A,B,延長AO交切線PB于點(diǎn)C,交半圓與于點(diǎn)D

1)若PC=5AC=4,求BC的長;

2)設(shè)DC:AD=1:2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y-x+2分別交x軸、y軸于點(diǎn)AB,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)AB.點(diǎn)Px軸上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作垂直于x軸的直線分別交拋物線和直線AB于點(diǎn)E和點(diǎn)F.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)點(diǎn)A的坐標(biāo)為   

2)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.

3)點(diǎn)P在線段OA上時(shí),若以B、EF為頂點(diǎn)的三角形與△FPA相似,求m的值.

4)若EF、P三個(gè)點(diǎn)中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),稱E、F、P三點(diǎn)為“共諧點(diǎn)”.直接寫出E、FP三點(diǎn)成為“共諧點(diǎn)”時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EBC上一點(diǎn),連接AE,點(diǎn)FAE上一點(diǎn),連接FC,若∠BAE=∠EFC,CFCD,ABBC32,AF4,則FC的長為_____

查看答案和解析>>

同步練習(xí)冊答案