【題目】如圖,AB是⊙O的直徑,弦CDAB于點(diǎn)E,點(diǎn)G在直徑DF的延長線上,∠D=G=30°.

(1)求證:CG是⊙O的切線 (2)若CD=6,求GF的長

【答案】(1)證明見解析;(2).

【解析】

試題(1)連接OC,根據(jù)三角形內(nèi)角和定理可得∠DCG=180°-∠D-∠G=120°,再計(jì)算出∠GCO的度數(shù)可得OC⊥CG,進(jìn)而得到CG是⊙O的切線;
(2)設(shè)EO=x,則CO=2x,再利用勾股定理計(jì)算出EO的長,進(jìn)而得到CO的長,然后再計(jì)算出FG的長即可.

試題解析:(1)證明:連接OC.


∵OC=OD,∠D=30°,
∴∠OCD=∠D=30°.
∵∠G=30°,
∴∠DCG=180°-∠D-∠G=120°.
∴∠GCO=∠DCG-∠OCD=90°.
∴OC⊥CG.
又∵OC是⊙O的半徑.
∴CG是⊙O的切線.
(2)解:∵AB是⊙O的直徑,CD⊥AB,
∴CE=CD=3.
∵在Rt△OCE中,∠CEO=90°,∠OCE=30°,
∴EO=CO,CO2=EO2+CE2
設(shè)EO=x,則CO=2x.
∴(2x)2=x2+32
解得x=±(舍負(fù)值).
∴CO=2
∴FO=2
在△OCG中,∵∠OCG=90°,∠G=30°,
∴GO=2CO=4
∴GF=GO-FO=2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎(chǔ)上,進(jìn)一步證明( )

A.AB=ADACBDB.AB=ADAC=BDC.A=∠BAC=BDD.ACBD互相垂直平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,2×2網(wǎng)格(每個(gè)小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個(gè)格點(diǎn).拋物線l的解析式為n為整數(shù))l經(jīng)過這九個(gè)格點(diǎn)中的三個(gè),則滿足這樣條件的拋物線條數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在反比例函數(shù)y=x0)的圖象上,ABy軸于點(diǎn)B,點(diǎn)Cx軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)DOB的中點(diǎn),若△ADE的面積為6,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣23)、B(﹣60)、C(﹣10).

1)畫出△ABC關(guān)于原點(diǎn)成中心對稱的三角形△ABC′;

2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對應(yīng)點(diǎn)B″的坐標(biāo);

3)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+c與直線yx交于(1,1)和(3,3)兩點(diǎn),現(xiàn)有以下結(jié)論:b24c0;3b+c+60當(dāng)x2+bx+c時(shí),x2當(dāng)1x3時(shí),x2+b1x+c0,其中正確的序號是( 。

A. ①②④B. ②③④C. ②④D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 ABx軸上,直角頂點(diǎn)Cy軸正半軸上,已知點(diǎn)A(-1,0).

1)請直接寫出點(diǎn)BC的坐標(biāo):B , )、C );并求經(jīng)過A、B、C三點(diǎn)的拋物

線解析式;

2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段

AB上(點(diǎn)E是不與A、B兩點(diǎn)重合的動點(diǎn)),并使ED所在直線經(jīng)過點(diǎn)C 此時(shí),EF所在直線與(1)中的拋物線交于第一象限的點(diǎn)M

①設(shè)AE=x,當(dāng)x為何值時(shí),OCE∽△OBC

②在①的條件下探究:拋物線的對稱軸上是否存在點(diǎn)P使PEM是等腰三角形,若存在,請求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線和拋物線都經(jīng)過點(diǎn)A1,0),B,且當(dāng)時(shí),二次函數(shù)的值為

1)求的值和拋物線的解析式;

2)求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某市為創(chuàng)評全國文明城市稱號,周末團(tuán)市委組織志愿者進(jìn)行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.

抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機(jī)抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機(jī)抽取第二張,記下姓名.

(1)該班男生小剛被抽中 事件,小悅被抽中 事件(不可能必然隨機(jī)”);第一次抽取卡片小悅被抽中的概率為 ;

(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出小惠被抽中的概率.

查看答案和解析>>

同步練習(xí)冊答案