【題目】在平面直角坐標(biāo)系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 ABx軸上,直角頂點Cy軸正半軸上,已知點A(-1,0).

1)請直接寫出點BC的坐標(biāo):B , )、C , );并求經(jīng)過A、B、C三點的拋物

線解析式;

2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段

AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C 此時,EF所在直線與(1)中的拋物線交于第一象限的點M

①設(shè)AE=x,當(dāng)x為何值時,OCE∽△OBC;

②在①的條件下探究:拋物線的對稱軸上是否存在點P使PEM是等腰三角形,若存在,請求點P的坐標(biāo);若不存在,請說明理由.

【答案】1B30),C0,),2)①x=2②存在P點坐標(biāo)為(12)或(1,—2)或(12)或(1,

【解析】

解:(1B30),C0,)。

A—1,0B3,0

∴可設(shè)過AB、C三點的拋物線為。

又∵C0)在拋物線上,∴,解得。

∴經(jīng)過A、B、C三點的拋物線解析式

2)①當(dāng)OCE∽△OBC時,則

OC=, OE=AE—AO=x1 OB=3,∴!x=2

∴當(dāng)x=2時,OCE∽△OBC。

②存在點P。

由①可知x=2,∴OE=1!E1,0)。 此時,CAE為等邊三角形。

∴∠AEC=A=60°。

又∵∠CEM=60°, ∴∠MEB=60°

∴點C與點M關(guān)于拋物線的對稱軸對稱。

C0,),∴M2,)。

MMNx軸于點N2,0),

MN=。 EN=1。

。

PEM為等腰三角形,則:

)當(dāng)EP=EM, EM=2,且點P在直線x=1上,∴P(12)P1,-2)。

ⅱ)當(dāng)EM=PM時,點MEP的垂直平分線上,∴P(1,2) 。

ⅲ)當(dāng)PE=PM時,點P是線段EM的垂直平分線與直線x=1的交點,∴P(1,)

∴綜上所述,存在P點坐標(biāo)為(1,2)或(1,—2)或(12)或(1,)時,

EPM為等腰三角形。

1)由已知,根據(jù)銳角三角函數(shù)定義和特殊角的三角函數(shù)值可求出OCAB的長,從而求得點B、C的坐標(biāo)。設(shè)定交點式,用待定系數(shù)法,求得拋物線解析式。

2)①根據(jù)相似三角形的性質(zhì),對應(yīng)邊成比例列式求解。

②求得EM的長,分EP=EM, EM=PMPE=PM三種情況求解即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A的坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點C,連接ACBC,過AB、C三點作拋物線.

1)求點C的坐標(biāo)及拋物線的解析式;

2)點EAC延長線上一點,∠BCE的平分線CD⊙O′于點D,求點D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;

3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD,若存在,請求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,BC=8cmAC=6cm.點PB出發(fā)沿BAA運動,速度為每秒1cm,點E是點BP為對稱中心的對稱點,點P運動的同時,點QA出發(fā)沿ACC運動,速度為每秒2cm,當(dāng)點Q到達(dá)頂點C時,P,Q同時停止運動,設(shè)P,Q兩點運動時間為t秒.

(1)當(dāng)t為何值時,PQBC?

(2)設(shè)四邊形PQCB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;

(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時t的值;若不能,請說明理由;

(4)當(dāng)t為何值時,△AEQ為等腰三角形?(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點E,點G在直徑DF的延長線上,∠D=G=30°.

(1)求證:CG是⊙O的切線 (2)若CD=6,求GF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若平面直角坐標(biāo)系內(nèi)的點 M 滿足橫、縱坐標(biāo)都為整數(shù),則把點 M 叫做整點.例如:P(1,0)、Q(2,-2)都是整點.拋物線 y=mx22mx+m1(m>0) x 軸交于 A B 兩點,若該拋物線在 AB 之間的部分與線段 AB 所圍成的區(qū)域(包括邊界)恰有 6 個整點,則 m 的取值范圍是( )

A. m B. m C. m D. m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)學(xué)興趣小組的小穎想測量教學(xué)樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是08m,但當(dāng)她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),他先測得留在墻壁上的影高為12m,又測得地面的影長為26m,請你幫她算一下,樹高是(

A、325m B、425m C、445m D、475m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象交x軸于(-1,0)點,則下列結(jié)論中正確的是(

A.c0B.a-b+c<0C.b2<4acD.2a+b=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+4 經(jīng)過點A(﹣3,0),點 B 在拋物線上,CBx軸,且AB 平分CAO.則此拋物線的解析式是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點ABC(頂點是網(wǎng)格線的交點)和點A1

1)將ABC繞點A順時針旋轉(zhuǎn)90°,畫出相應(yīng)的AB1C1

2)將AB1C1沿射線AA1平移到A1B2C2處,畫出A1B2C2;

3)點C在兩次變換過程中所經(jīng)過的路徑長為   

查看答案和解析>>

同步練習(xí)冊答案