【題目】如圖,已知BD⊥AB于點B,AC⊥AB于點A,且BD=3,AC=2,AB=m,在線段AB上找一點E,使△BDE與△ACE相似,若這樣的點E有且只有兩個,則m的值是______
【答案】5或2
【解析】
當(dāng)∠ACE=∠BDE時,△ACE∽△BDE,得出,AE=BE①,當(dāng)ACE=∠BED時,△ACE∽△BED,得出,即AE×BE=AC×BD=6②,由①②得出BE2=6,解得BE=3,AE=2,得出m=5;當(dāng)AE=2時,BE=3,兩個三角形相似;當(dāng)AE=3時,BE=2,兩個三角形全等,符合題目要求;設(shè)AE=x,則BE=m﹣x,得出x:3=2:(m﹣x),整理得x2﹣mx+6=0,方程有唯一解時,△=m2﹣24=0,解得m=,當(dāng)m=時,AE:BE=2:3時,兩個三角形相似;AE=BE=時,兩個三角形相似;同樣是兩個點可以滿足要求;即可得出答案.
解:∵BD⊥AB于點B,AC⊥AB,
∴∠A=∠B=90°,
當(dāng)∠ACE=∠BDE時,△ACE∽△BDE,
∴,
∴AE=BE①,
當(dāng)ACE=∠BED時,△ACE∽△BED,
∴,即AE×BE=AC×BD=2×3=6②,
由①②得:BE2=6,
解得:BE=3,
∴AE=2,
∴AB=AE+BE=5,即m=5;
當(dāng)AE=2時,BE=3,兩個三角形相似;
當(dāng)AE=3時,BE=2,兩個三角形全等,符合題目要求;
設(shè)AE=x,則BE=m﹣x,
∴x:3=2:(m﹣x),
整理得:x2﹣mx+6=0,
方程有唯一解時,△=m2﹣24=0,
解得:m=±(負值舍去),
∴m=;
當(dāng)m=時,
AE:BE=2:3時,兩個三角形相似;
AE=BE=時,兩個三角形相似;同樣是兩個點可以滿足要求;
綜上所述,△BDE與△ACE相似,若這樣的點E有且只有兩個,則m的值是5或;
故答案為:5或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點G為弧BC上一動點,CG與AB的延長線交于點F,連接OD.
(1)判定∠AOD與∠CGD的大小關(guān)系為 ,并求證:GB平分∠DGF.
(2)在G點運動過程中,當(dāng)GD=GF時,DE=4,BF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=60°,OF平分∠MON,點A在射線OM上, P,Q是射線ON上的兩動點,點P在點Q的左側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交OM,OF,ON于點D,B,C,連接AB,PB.
(1)依題意補全圖形;
(2)判斷線段 AB,PB之間的數(shù)量關(guān)系,并證明;
(3)連接AP,設(shè),當(dāng)P和Q兩點都在射線ON上移動時,是否存在最小值?若存在,請直接寫出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點都被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為 .
(2)用樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為“節(jié)能減排,保護環(huán)境”,某村計劃建造A、B兩種型號的沼氣池共20個,以解決所有農(nóng)戶的燃料問題.據(jù)市場調(diào)查:建造A、B兩種型號的沼氣池各1個,共需費用5萬元;建造A型號的沼氣池3個,B種型號的沼氣池4個,共需費用18萬元.
(1)求建造A、B兩種型號的沼氣池造價分別是多少?
(2)設(shè)建造A型沼氣池x個,總費用為y萬元,求y與x之間的函數(shù)關(guān)系式;若要使投入總費用不超過52萬元,至少要建造A型沼氣池多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AC、BC的中點,F是BC延長線上一點,∠F=∠B.
(l)若AB=1O,求FD的長;
(2)若AC=BC.求證:△CDE∽△DFE .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點在原點,對稱軸為軸.直線的圖象與二次函數(shù)的圖象交于點和點(點在點的左側(cè))
(1)求的值及直線解析式;
(2)若過點的直線平行于直線且直線與二次函數(shù)圖象只有一個交點,求交點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點B的坐標(biāo)為(-4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設(shè)點P運動的時間為t(s).
(1)∠PBD的度數(shù)為 ,點D的坐標(biāo)為 (用t表示);
(2)當(dāng)t為何值時,△PBE為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東坡商貿(mào)公司購進某種水果成本為20元/,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(元/)與時間(天)之間的函數(shù)關(guān)系式,為整數(shù),且其日銷售量()與時間(天)的關(guān)系如下表:
時間(天) | 1 | 3 | 6 | 10 | 20 | … |
日銷售量() | 118 | 114 | 108 | 100 | 80 | … |
(1)已知與之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷售量;
(2)哪一天的銷售利潤最大?最大日銷售利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com