【題目】為“節(jié)能減排,保護(hù)環(huán)境”,某村計(jì)劃建造AB兩種型號(hào)的沼氣池共20個(gè),以解決所有農(nóng)戶的燃料問(wèn)題.據(jù)市場(chǎng)調(diào)查:建造AB兩種型號(hào)的沼氣池各1個(gè),共需費(fèi)用5萬(wàn)元;建造A型號(hào)的沼氣池3個(gè),B種型號(hào)的沼氣池4個(gè),共需費(fèi)用18萬(wàn)元.

1)求建造A、B兩種型號(hào)的沼氣池造價(jià)分別是多少?

2)設(shè)建造A型沼氣池x個(gè),總費(fèi)用為y萬(wàn)元,求yx之間的函數(shù)關(guān)系式;若要使投入總費(fèi)用不超過(guò)52萬(wàn)元,至少要建造A型沼氣池多少個(gè)?

【答案】(1)建造AB兩種型號(hào)的沼氣池造價(jià)分別是2萬(wàn)元、3萬(wàn)元(2)要使投入總費(fèi)用不超過(guò)52萬(wàn)元,至少要建造A型沼氣池8個(gè)

【解析】

1)根據(jù)建造AB兩種型號(hào)的沼氣池造價(jià)分別是x萬(wàn)元,y萬(wàn)元,利用建造A、B兩種型號(hào)的沼氣池各1個(gè),共需費(fèi)用5萬(wàn)元;建造A型號(hào)的沼氣池3個(gè),B種型號(hào)的沼氣池4個(gè),共需費(fèi)用18萬(wàn)元,得出等式方程,求出即可;

2)根據(jù)建造A型沼氣池x個(gè),總費(fèi)用為y萬(wàn)元,得出yx之間的函數(shù)關(guān)系式,根據(jù)投入總費(fèi)用不超過(guò)52萬(wàn)元,即可得出x的取值范圍.

解:(1)設(shè)建造A、B兩種型號(hào)的沼氣池造價(jià)分別是x萬(wàn)元,y萬(wàn)元,

依題意,得 ,

解得x2y3,

答:建造A、B兩種型號(hào)的沼氣池造價(jià)分別是2萬(wàn)元、3萬(wàn)元;

2y2x+320x)=﹣x+60,

當(dāng)y≤52時(shí),60x≤52,

解得x≥8,

答:要使投入總費(fèi)用不超過(guò)52萬(wàn)元,至少要建造A型沼氣池8個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A為某封閉圖形邊界上一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x,線段AP的長(zhǎng)為y,表示yx的函數(shù)關(guān)系的圖象大致如圖所示,則該封閉圖形可能是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過(guò)B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過(guò)B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1y=ax2+bx-1經(jīng)過(guò)點(diǎn)A-2,1)和點(diǎn)B-1-1),拋物線C2y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M

1)求拋物線C1的表達(dá)式;

2)直接用含t的代數(shù)式表示線段MN的長(zhǎng);

3)當(dāng)AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值;

4)在(3)的條件下,設(shè)拋物線C1y軸交于點(diǎn)P,點(diǎn)My軸右側(cè)的拋物線C2上,連接AMy軸于點(diǎn)K,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQQN,當(dāng)KQ=1且∠KNQ=BNP時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在正方形ABCD中,AB6,M為對(duì)角線BD上任意一點(diǎn)(不與B、D重合),連接CM,過(guò)點(diǎn)MMNCM,交線段AB于點(diǎn)N

1)求證:MNMC;

2)若DMDB25,求證:AN4BN;

3)如圖②,連接NCBD于點(diǎn)G.若BGMG35,求NGCG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線yax2+bx+c的頂點(diǎn),點(diǎn)B0,2)是拋物線與y軸的交點(diǎn),直線BC平行于x軸,交拋物線于點(diǎn)C,Dx軸上任意一點(diǎn),若SABC3,SBCD2,則點(diǎn)A的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車分別從相距420kmAB兩地相向而行,乙車比甲車先出發(fā)1小時(shí),兩車分別以各自的速度勻速行駛,途經(jīng)C地(AB、C三地在同一條直線上).甲車到達(dá)C地后因有事立即按原路原速返回A地,乙車從B地直達(dá)A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時(shí)間x(小時(shí))的關(guān)系如圖所示,結(jié)合圖象信息回答下列問(wèn)題:

1)甲車的速度是   千米/時(shí),乙車的速度是   千米/時(shí);

2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;

3)甲車出發(fā)多長(zhǎng)時(shí)間后兩車相距90千米?請(qǐng)你直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(問(wèn)題發(fā)現(xiàn))

如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE90°,延長(zhǎng)CA到點(diǎn)F,使得AFAC,連接DF、BE,則線段BEDF的數(shù)量關(guān)系為   ,位置關(guān)系為   ;

2)(拓展研究)

將△ADE繞點(diǎn)A旋轉(zhuǎn),(1)中的結(jié)論有無(wú)變化??jī)H就圖(2)的情形給出證明;

3)(解決問(wèn)題)

當(dāng)AB2,AD,△ADE旋轉(zhuǎn)得到D,E,F三點(diǎn)共線時(shí),直接寫出線段DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】十三五以來(lái),黨中央,國(guó)務(wù)院不斷加大脫貧攻堅(jiān)的支持決策力度,并出臺(tái)配套文件,國(guó)家機(jī)關(guān)各部門也出臺(tái)多項(xiàng)政策文件或?qū)嵤┓桨福硢挝徽J(rèn)真分析被幫扶人各種情況后,建議被幫扶人大力推進(jìn)特色產(chǎn)業(yè),大量栽種甜橙;同時(shí)搭建電商運(yùn)營(yíng)服務(wù)平臺(tái),開(kāi)設(shè)網(wǎng)店銷售農(nóng)產(chǎn)品橙.豐收后,將一批甜橙采取現(xiàn)場(chǎng)銷售和網(wǎng)絡(luò)銷售相結(jié)合進(jìn)行試銷,統(tǒng)計(jì)后發(fā)現(xiàn):同樣多的甜橙,現(xiàn)場(chǎng)銷售可獲利800元,網(wǎng)絡(luò)銷售則可獲利1000元,網(wǎng)絡(luò)銷售比現(xiàn)場(chǎng)銷售每件多獲利5

1)現(xiàn)場(chǎng)銷售和網(wǎng)絡(luò)銷售每件分別多少元?

2)根據(jù)甜橙試銷情況分析,現(xiàn)場(chǎng)銷售量a(件)和網(wǎng)絡(luò)銷售量b(件)滿足如下關(guān)系式:b=﹣a2+12a200.求a為何值時(shí),農(nóng)戶銷售甜橙獲得的總利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案