【題目】如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G 到BE的距離是( 。
A. B. C. D.
【答案】A
【解析】
根據(jù)平行線的判定,可得AB與GE的關(guān)系,根據(jù)平行線間的距離相等,可得△BEG與△AEG的關(guān)系,根據(jù)根據(jù)勾股定理,可得AH與BE的關(guān)系,再根據(jù)勾股定理,可得BE的長,根據(jù)三角形的面積公式,可得G到BE的距離.
連接GB、GE,
由已知可知∠BAE=45°.
又∵GE為正方形AEFG的對角線,
∴∠AEG=45°.
∴AB∥GE.
∵AE=4,AB與GE間的距離相等,
∴GE=8,S△BEG=S△AEG=SAEFG=16.
過點B作BH⊥AE于點H,
∵AB=2,
∴BH=AH=.
∴HE=3.
∴BE=2.
設(shè)點G到BE的距離為h.
∴S△BEG=BEh=×2×h=16.
∴h=.
即點G到BE的距離為.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,∠A=∠EDF,再添加一個條件,可使△ABC ≌ △DEF,下列條件不符合的是
A.∠B=∠EB.BC∥EFC.AD=CFD.AD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā),沿著AB以每秒4cm的速度向B點運動;同時點Q從C點出發(fā),沿CA以每秒3cm的速度向A點運動,設(shè)運動時間為x秒.
(1)當(dāng)CQ=10時,求的值.
(2)當(dāng)x為何值時,PQ∥BC;
(3)是否存在某一時刻,使△APQ∽△CQB?若存在,求出此時AP的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川自貢12分)將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時針旋轉(zhuǎn)45°得圖②,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
(3)如圖③,在B1C上取一點E,連接BE、P1E,設(shè)BC=1,當(dāng)BE⊥P1B時,求△P1BE面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A的坐標(biāo)為(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上.若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D,下列四個結(jié)論:
①AD是∠BAC的平分線;
②∠ADC=60°;
③點D在AB的中垂線上;
④S△ACD:S△ACB=1:3.
其中正確的有( 。
A. 只有①②③ B. 只有①②④ C. 只有①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣西賀州市)如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點A′的坐標(biāo)是( 。
A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com