【題目】聯(lián)華商場(chǎng)以150元/臺(tái)的價(jià)格購(gòu)進(jìn)某款電風(fēng)扇若干臺(tái),很快售完.商場(chǎng)用相同的貨款再次購(gòu)進(jìn)這款電風(fēng)扇,因價(jià)格提高30元,進(jìn)貨量減少了10臺(tái).
(1)這兩次各購(gòu)進(jìn)電風(fēng)扇多少臺(tái)?
(2)商場(chǎng)以250元/臺(tái)的售價(jià)賣(mài)完這兩批電風(fēng)扇,商場(chǎng)獲利多少元?

【答案】
(1)

【解答】解:設(shè)第一次購(gòu)買(mǎi)了x臺(tái)電風(fēng)扇,則第二次購(gòu)買(mǎi)了(x﹣10)臺(tái)電風(fēng)扇,

由題意得,=150+30,

解得:x=60,

經(jīng)檢驗(yàn):x=60是原分式方程的解,且符合題意,

則x﹣10=60﹣10=50,

答:第一次購(gòu)買(mǎi)了60臺(tái)電風(fēng)扇,則第二次購(gòu)買(mǎi)了50臺(tái)電風(fēng)扇;


(2)

第一次獲利:(250﹣150)×60+(250﹣150﹣30)×50

=6000+3500=9500(元).

答:商場(chǎng)獲利9500元.


【解析】(1)設(shè)第一次購(gòu)買(mǎi)了x臺(tái)電風(fēng)扇,則第二次購(gòu)買(mǎi)了(x﹣10)臺(tái)電風(fēng)扇,根據(jù)題意可得,第一次比第二次單價(jià)低30元,據(jù)此列方程求解;
(2)分別求出兩次的盈利,然后求和.
【考點(diǎn)精析】本題主要考查了分式方程的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫(xiě)出答案(要有單位)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線(xiàn).
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點(diǎn),且AC=CG,過(guò)點(diǎn)C的直線(xiàn)CD⊥BG于點(diǎn)D,交BA的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BC,交OD于點(diǎn)F.

(1)求證:CD是⊙O的切線(xiàn).
(2)若,求∠E的度數(shù).
(3)連接AD,在2的條件下,若CD=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=﹣x2+bx+c與直線(xiàn)AB相交于A(﹣3,0),B(0,3)兩點(diǎn).

(1)求這條拋物線(xiàn)的解析式;
(2)設(shè)C是拋物線(xiàn)對(duì)稱(chēng)軸上的一動(dòng)點(diǎn),求使∠CBA=90°的點(diǎn)C的坐標(biāo);
(3)探究在拋物線(xiàn)上是否存在點(diǎn)P,使得△APB的面積等于3?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面問(wèn)題:2+22+23+24+…+22015﹣1的末位數(shù)字是( 。
A.0
B.3
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連接PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)是(  )

A.8
B.10
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程(a﹣1)x2﹣2x+2=0有實(shí)數(shù)根,則整數(shù)a的最大值為( 。
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(5,4),⊙M與y軸相切于點(diǎn)C,與x軸相交于A,B兩點(diǎn).

(1)則點(diǎn)A,B,C的坐標(biāo)分別是A( ,  ),B( ,  ),C(  ,  );
(2)設(shè)經(jīng)過(guò)A,B兩點(diǎn)的拋物線(xiàn)解析式為y=(x﹣5)2+k,它的頂點(diǎn)為E,求證:直線(xiàn)EA與⊙M相切;
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上,是否存在點(diǎn)P,且點(diǎn)P在x軸的上方,使△PBC是等腰三角形?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的內(nèi)接四邊形ABCD兩組對(duì)邊的延長(zhǎng)線(xiàn)分別交于點(diǎn)E、F.

(1)若∠E=∠F時(shí),求證:∠ADC=∠ABC;
(2)(2)若∠E=∠F=42°時(shí),求∠A的度數(shù)
(3)(3)若∠E=α,∠F=β,且α≠β.請(qǐng)你用含有α、β的代數(shù)式表示∠A的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案