精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點P從點E出發(fā)沿EA方向運動,連接PD,以PD為邊,在PD右側按如圖方式作等邊△DPF,當點P從點E運動到點A時,點F運動的路徑長是(  )

A.8
B.10
C.
D.

【答案】A
【解析】解:連結DE,作FH⊥BC于H,如圖,

∵△ABC為等邊三角形,
∴∠B=60°,
過D點作DE′⊥AB,則BE′=BD=2,
∴點E′與點E重合,
∴∠BDE=30°,DE=BE=2,
∵△DPF為等邊三角形,
∴∠PDF=60°,DP=DF,
∴∠EDP+∠HDF=90°,
∵∠HDF+∠DFH=90°,
∴∠EDP=∠DFH,
在△DPE和△FDH中,
,
∴△DPE≌△FDH,
∴FH=DE=2,
∴點P從點E運動到點A時,點F運動的路徑為一條線段,此線段到BC的距離為2,
當點P在E點時,作等邊三角形DEF1 , ∠BDF1=30°+60°=90°,則DF1⊥BC,
當點P在A點時,作等邊三角形DAF2 , 作F2Q⊥BC于Q,則△DF2Q≌△ADE,所以DQ=AE=10﹣2=8,
∴F1F2=DQ=8,
∴當點P從點E運動到點A時,點F運動的路徑長為8.
故選:A
【考點精析】解答此題的關鍵在于理解等邊三角形的性質的相關知識,掌握等邊三角形的三個角都相等并且每個角都是60°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,對角線AC、BD交于點O,動點P在線段BC上(不含點B),∠BPE= ∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.

(1)當點P與點C重合時(如圖①),求證:△BOG≌△POE;
(2)通過觀察、測量、猜想: = ,并結合圖②證明你的猜想;
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求 的值.(用含α的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(k>0)的圖象與BC邊交于點E.

(1)當F為AB的中點時,求該函數的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=,有以下的結論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或;④0<BE≤,其中正確的結論是 (填入正確結論的序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】聯(lián)華商場以150元/臺的價格購進某款電風扇若干臺,很快售完.商場用相同的貨款再次購進這款電風扇,因價格提高30元,進貨量減少了10臺.
(1)這兩次各購進電風扇多少臺?
(2)商場以250元/臺的售價賣完這兩批電風扇,商場獲利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點.

(1)如圖1,求⊙O的半徑;
(2)如圖1,若點E是BC的中點,連接PE,求PE的長度;
(3)如圖2,若點M是BC邊上任意一點(不含B、C),以點M為直角頂點,在BC的上方作∠AMN=90°,交直線CP于點N,求證:AM=MN.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A1 , A2 , …,An均在直線y=x﹣1上,點B1 , B2 , …,Bn均在雙曲線上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標為an(n為正整數).若a1=﹣1,則a2015=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知BD平分∠ABF,且交AE于點D,

(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)設AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四邊形BDEF是△ABC的內接正方形(點D、E、F在三角形的邊上).則此正方形的面積是 

查看答案和解析>>

同步練習冊答案