【題目】如圖,已知拋物線y=﹣x2+bx+c與直線AB相交于A(﹣3,0),B(0,3)兩點(diǎn).
(1)求這條拋物線的解析式;
(2)設(shè)C是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),求使∠CBA=90°的點(diǎn)C的坐標(biāo);
(3)探究在拋物線上是否存在點(diǎn)P,使得△APB的面積等于3?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】
(1)
【解答】解:把點(diǎn)A(﹣3,0),B(0,3)代入y=﹣x2+bx+c得:
,
解得:
∴拋物線的解析式是y=﹣x2﹣2x+3;
(2)
如圖1:過點(diǎn)B作CB⊥AB,交拋物線的對(duì)稱軸于點(diǎn)C,過點(diǎn)C作CE⊥y軸,垂足為點(diǎn)E,
∵y=﹣x2﹣2x+3,
∴拋物線對(duì)稱軸為直線x=﹣1,
∴CE=1,
∵AO=BO=3,
∴∠ABO=45°,
∴∠CBE=45°,
∴BE=CE=1,
∴OE=OB+BE=4,
∴點(diǎn)C的坐標(biāo)為(﹣1,4);
(3)
假設(shè)在在拋物線上存在點(diǎn)P,使得△APB的面積等于3,如圖2:
連接PA,PB,過P作PD⊥AB于點(diǎn)D,作PF∥y軸交AB于點(diǎn)F,在Rt△OAB中,易求AB==,
∵S△APB=3,
∴PD=
∵∠PFD=∠ABO=45°,
∴PF=2,
設(shè)點(diǎn)P的坐標(biāo)為(m,﹣m2﹣2m+3),
∵A(﹣3,0),B(0,3),
∴直線AB的解析式為y=x+3,
∴可設(shè)點(diǎn)F的坐標(biāo)為(m,m+3),
①當(dāng)點(diǎn)P在直線AB上方時(shí),
可得:﹣m2﹣2m+3=m+3+2,
解得:m=﹣1或﹣2,
∴符合條件的點(diǎn)P坐標(biāo)為(﹣1,4)或(﹣2,3),
②當(dāng)點(diǎn)P在直線AB下方時(shí),
可得:﹣m2﹣2m+3=m+3﹣2,
解得:m=或,
∴符合條件的點(diǎn)P坐標(biāo)為(,)或(,)
綜上可知符合條件的點(diǎn)P有4個(gè),坐標(biāo)分別為:(﹣1,4)或(﹣2,3)或(,)或(,).
【解析】(1)把點(diǎn)A(﹣3,0),B(0,3)兩點(diǎn)的坐標(biāo)分別代入拋物線解析式求出b和c的值即可;
(2)過點(diǎn)B作CB⊥AB,交拋物線的對(duì)稱軸于點(diǎn)C,過點(diǎn)C作CE⊥y軸,垂足為點(diǎn)E,易求點(diǎn)C的橫坐標(biāo),再求出OE的長,即可得到點(diǎn)C的縱坐標(biāo);
(3)假設(shè)在在拋物線上存在點(diǎn)P,使得△APB的面積等于3,連接PA,PB,過P作PD⊥AB于點(diǎn)D,作PF∥y軸交AB于點(diǎn)F,在Rt△OAB中,易求AB==3,設(shè)點(diǎn)P的坐標(biāo)為(m,﹣m2﹣2m+3),設(shè)點(diǎn)F的坐標(biāo)為(m,m+3),再分兩種情況①當(dāng)點(diǎn)P在直線AB上方時(shí),②當(dāng)點(diǎn)P在直線AB下方時(shí)分別討論求出符合條件點(diǎn)P的坐標(biāo)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是⊙O的直徑,∠A=30°,延長OB到D使BD=OB.
(1)△OBC是否是等邊三角形?說明理由;
(2)求證:DC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=k2x+b的圖象交于點(diǎn)P(m,﹣1)和Q(1,2)兩點(diǎn),記一次函數(shù)與坐標(biāo)軸的交點(diǎn)分別為A,B,連接OP,OQ.
(1)求兩函數(shù)的解析式;
(2)求證:△POB≌△QOA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)(k>0)的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有學(xué)生2000名,為了了解學(xué)生在籃球、足球、排球和乒乓球這四項(xiàng)球類運(yùn)動(dòng)中最喜愛的一項(xiàng)球類運(yùn)動(dòng)情況,對(duì)學(xué)生開展了隨機(jī)調(diào)查,丙將結(jié)果繪制成如下的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,完成下列問題:
(1)本次調(diào)查的樣本容量是 ;
(2)某位同學(xué)被抽中的概率是 ;
(3)據(jù)此估計(jì)全校最喜愛籃球運(yùn)動(dòng)的學(xué)生人數(shù)約有 名;
(4)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=15,點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點(diǎn)E,且tan∠α=,有以下的結(jié)論:①△ADE∽△ACD;②當(dāng)CD=9時(shí),△ACD與△DBE全等;③△BDE為直角三角形時(shí),BD為12或;④0<BE≤,其中正確的結(jié)論是 (填入正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)華商場(chǎng)以150元/臺(tái)的價(jià)格購進(jìn)某款電風(fēng)扇若干臺(tái),很快售完.商場(chǎng)用相同的貨款再次購進(jìn)這款電風(fēng)扇,因價(jià)格提高30元,進(jìn)貨量減少了10臺(tái).
(1)這兩次各購進(jìn)電風(fēng)扇多少臺(tái)?
(2)商場(chǎng)以250元/臺(tái)的售價(jià)賣完這兩批電風(fēng)扇,商場(chǎng)獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1 , A2 , …,An均在直線y=x﹣1上,點(diǎn)B1 , B2 , …,Bn均在雙曲線上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若a1=﹣1,則a2015= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗為了測(cè)旗桿AB的高度,小麗眼睛距地面1.5米,小麗站在C點(diǎn),測(cè)出旗桿A的仰角為30°,小麗向前走了10米到達(dá)點(diǎn)E,此時(shí)的仰角為60°,求旗桿的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com