【題目】觀察下列每對數(shù)在數(shù)軸上的對應點間的距離,35,4與﹣2,43,1與﹣5.并回答下列各題:

(1)數(shù)軸上表示4和﹣2兩點間的距離是 ;表示﹣1和﹣5兩點間的距離是 .

(2)若數(shù)軸上的點A表示的數(shù)為x,B表示的數(shù)為﹣3.

①數(shù)軸上A、B兩點間的距離可以表示為 (用含x的代數(shù)式表示);

②如果數(shù)軸上A、B兩點間的距離為|AB|=1,x的值.

(3)直接寫出代數(shù)式的最小值為 .

【答案】16 4 2丨x+3丨 ②-2或者-4 (3)5

【解析】

距離一定是個非負數(shù)。

1)數(shù)軸上表示4和﹣2兩點間的距離是6;表示﹣1和﹣5兩點間的距離是4.

2)距離是個非負數(shù),故值一定要加絕對值。

令丨x-(-3)丨=1,解得:x=-2或者-4

(3)當時,代數(shù)式的最小值為

時,代數(shù)式的最小值為5

時,代數(shù)式的最小值

綜合以上,可知代數(shù)式的最小值為5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為打造體育特色學校,落實每天鍛煉1小時的規(guī)定,經(jīng)調(diào)查研究后決定在七、八、九年級分別開展跳繩、羽毛球、毽球項目.七年級共有六個班,每班的人數(shù)以人為標準,各班人數(shù)情況如下表.八年級學生人數(shù)比七年級學生人數(shù)的2倍少240人,九年級學生人數(shù)的2倍剛好是七、八年級學生人數(shù)的和.(說明:1901班表示七年級一班)

班級

1901

1902

1903

1904

1905

1906

與標準人數(shù)的()

+3

+2

-2

+2

0

-1

(1)用含的代數(shù)式表示七年級學生人數(shù).

(2)學校按每人一根跳繩,一個毽球,兩人一副羽毛球拍的標準,購買相應的體育器材以滿足學生的鍛煉需要,已知跳繩每根5元,毽球每個3元,羽毛球拍每副18元,當時,求購買器材的總費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】江夏區(qū)某出租車在某一天以江夏體育館為出發(fā)地在東西方向營運,向東為正,向西為負,行車里程(單位:km)依先后次序記錄如下:+9,-2,-5,-4,-12,+8,+3-1,-4+10

(1)將最后一名乘客送到目的地,出租車離江夏體育館出發(fā)點多遠?

(2)直接寫出該出租車在行駛過程中,離江夏體育館最遠的距離是______.

(3)出租車按物價部門規(guī)定,行程不超過3km(3km),按起步價8元收費,若行程超過3km的,則超過的部分,每千米加收1.2元,該司機這天的營業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,過點于點,交對角線于點,過點于點.

1)若,求四邊形的面積;(2)求證:.(溫馨提示;連接

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】工廠加工某種茶葉,計劃一周生產(chǎn)千克,平均每天生產(chǎn)千克,由于各種原因?qū)嶋H每天產(chǎn)量與計劃量相比有出入,某周七天的生產(chǎn)情況記錄如下(超產(chǎn)為正、減產(chǎn)為負):

,,,,

)這一周的實際產(chǎn)量是多少千克?

)該廠規(guī)定工人工資參照平均產(chǎn)量計發(fā),每千克元.若超產(chǎn),則超產(chǎn)的部分每千克元;若低于平均產(chǎn)量,按實際產(chǎn)量計發(fā),而且每少千克扣除元,那么該工廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)模型建立,如圖1,等腰直角三角形ABC中,∠ACB90°CBCA,直線ED經(jīng)過點C,過AADEDD,過BBEEDE.求證:△BEC≌△CDA;

(2)模型應用:

①已知直線yx3y軸交于A點,與x軸交于B點,將線段AB繞點B逆時針旋轉(zhuǎn)90度,得到線段BC,過點AC作直線.求直線AC的解析式;

②如圖3,矩形ABCO,O為坐標原點,B的坐標為(8,6)A,C分別在坐標軸上,P是線段BC上動點,已知點D在第一象限,且是直線y2x6上的一點,若△APD是不以A為直角頂點的等腰直角三角形,請直接寫出所有符合條件的點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點AAEBD,交CD的延長線于點E,過點EEFBC,交BC的延長線于點F.

1)求證:四邊形ABCD是菱形;(2)若∠ABC45°,BC1,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。

A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018

查看答案和解析>>

同步練習冊答案