【題目】如圖,AEF中,∠EAF=45°,AGEF于點G,現(xiàn)將AEG沿AE折疊得到AEB,將AFG沿AF折疊得到AFD,延長BEDF相交于點C

1)求證:四邊形ABCD是正方形;

2)連接BD分別交AE、AF于點MN,將ABM繞點A逆時針旋轉,使ABAD重合,得到ADH,試判斷線段MN、ND、DH之間的數(shù)量關系,并說明理由.

3)若EG=4GF=6,BM=3,求AGMN的長.

【答案】1)證明見解析;(2MN2=ND2+DH2,理由見解析;(3

【解析】

1)由圖形翻折變換的性質可知∠ABE=AGE=BAD=ADC=90°,AB=AD即可得出結論;

2)連接NH,由ABM≌△ADH,得AM=AH,BM=DH,∠ADH=ABD=45°,故∠NDH=90°,再證AMN≌△AHN,得MN=NH,由勾股定理即可得出結論;

3)設AG=x,則EC=x-4,CF=x-6,在RtECF中,利用勾股定理即可得出AG的值,同理可得出BD的長,設NH=y,在RtNHD,利用勾股定理即可得出MN的值.

1)證明:∵△AEBAED翻折而成,

∴∠ABE=AGE=90°,∠BAE=EAG,AB=AG

∵△AFDAFG翻折而成,

∴∠ADF=AGF=90°,∠DAF=FAG,AD=AG,

∵∠EAG+FAG=EAF=45°,

∴∠ABE=AGE=BAD=ADC=90°,

∴四邊形ABCD是矩形,

AB=AD,

∴四邊形ABCD是正方形;

2MN2=ND2+DH2,

理由:連接NH,

∵△ADHABM旋轉而成,

∴△ABM≌△ADH,

AM=AH,BM=DH,

∵由(1)∠BAD=90°AB=AD,

∴∠ADH=ABD=45°,

∴∠NDH=90°

,

∴△AMN≌△AHN,

MN=NH

MN2=ND2+DH2;

3)設AG=BC=x,則EC=x-4,CF=x-6

RtECF中,

CE2+CF2=EF2,即(x-42+x-62=100,x1=12x2=-2(舍去)

AG=12,

AG=AB=AD=12,∠BAD=90°

BD==,

BM=3,

MD=BD-BM=12-3=9

NH=y,

RtNHD中,

NH2=ND2+DH2,即y2=9-y2+32,解得y=5,即MN=5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點.

1)求證:四邊形BDEC是平行四邊形;

2)連接AD、BE,△ABC添加一個條件: ,使四邊形DBEA是矩形(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,C=90,BC=6,AC=8.動點M從點B開始沿邊BC向點C以每秒1個單位長度的速度運動,動點N從點C開始沿邊CA向點A以每秒2個單位長度的速度運動,點M、N同時出發(fā),且當其中一點到達端點時,另一點也隨之停止運動.過點MMDAC,交AB于點D,連接MN.設運動時間為t秒(t≥0).

(1)當t為何值時,四邊形ADMN為平行四邊形?

(2)是否存在t的值,使四邊形ADMN為菱形?若存在,求出t的值;若不存在,說明理由.并探究只改變點N的速度(勻速運動),使四邊形ADMN在某一時刻為菱形,求點N的速度

(3)如圖2,在整個運動過程中,求出線段MN中點P所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=AC,BC=20DEABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DNME,DNME相交于點O.若OMN是直角三角形,則DO的長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】西安市2016年中考,綜合素質測試滿分為100分.某校為了調查學生對于綜合素質的掌握程度,在九年級學生中隨機抽取了部分學生進行模擬測試,并將測試成績繪制成下面兩幅統(tǒng)計圖.

試根據(jù)統(tǒng)計圖中提供的數(shù)據(jù),回答下面問題:

1)計算樣本中,成績?yōu)?/span>98分的學生有   ,并補全條形統(tǒng)計圖.

2)樣本中,測試成績的中位數(shù)是   分,眾數(shù)是   分.

3)若該校九年級共有2000名學生,根據(jù)此次模擬成績估計該校九年級中考綜合素質測試將有多少名學生可以獲得滿分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。

ADBAC的平分線;②∠ADC=60°DAB的垂直平分線上.

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,的弦,平分于點,連接、,過點,交的延長線于點

1________(填“>”,“<”或“=”);

2)求證:的切線;

3)若的直徑為10,sinBAC,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實綠水青山就是金山銀山的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務該工程隊有兩種型號的挖掘機,已知3型和5型挖掘機同時施工一小時挖土165立方米;4型和7型挖掘機同時施工一小時挖土225立方米每臺型挖掘機一小時的施工費用為300,每臺型挖掘機一小時的施工費用為180

(1)分別求每臺, 型挖掘機一小時挖土多少立方米?

(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?

查看答案和解析>>

同步練習冊答案