【題目】如圖,平行四邊形ABCD的周長為28,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( )
A.28B.12C.13D.17
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,以為直徑的經(jīng)過點,連接、交于點.
(1)證明:;
(2)若,證明:與相切;
(3)在(2)條件下,連接交于點,連接,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個頂點的坐標(biāo)分別是A(﹣3,1),B(﹣1,﹣1),C(2,2).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點A1,B1,C1的坐標(biāo);
(2)畫出△ABC繞點B逆時針旋轉(zhuǎn)90°所得到的△A2B2C2,并求出S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點A、C分別是∠B的兩條邊上的點,點D、E分別是直線BA、BC上的點,直線AE、CD相交于點P.
(1)點D、E分別在線段BA、BC上;
①若∠B=60°(如圖1),且AD=BE,BD=CE,則∠APD的度數(shù)為 ;
②若∠B=90°(如圖2),且AD=BC,BD=CE,求∠APD的度數(shù);
(2)如圖3,點D、E分別在線段AB、BC的延長線上,若∠B=90°,AD=BC,∠APD=45°,求證:BD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,AH⊥BC,點E是AH上一點,延長AH至點F,使FH=EH.
(1)求證:四邊形EBFC是菱形;
(2)如果∠BAC=∠ECF,求證:AC⊥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,C、D是⊙O上的點,且OC∥BD, AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:①AD⊥BD; ②∠AOC=∠AEC; ③CB平分∠ABD;④AF=DF; ⑤BD=2OF; ⑥△CEF ≌△BED,其中一定成立的是( )
A. ① ③ ⑤ ⑥ B. ① ③ ④ ⑤
C. ② ④ ⑤ ⑥ D. ② ③ ④ ⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中, ,,,直線l從與AC重合的位置開始以每秒個單位的速度沿CB方向平行移動,且分別與CB,AB邊交于D,E兩點,動點F從A開始沿折線ACCBBA運動,點F在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位,點F與直線l同時出發(fā),設(shè)運動的時間為t秒,當(dāng)點F第一次回到點A時,點F與直線 l同時停止運動.運動過程中,作點F關(guān)于直線DE的對稱點,記為點,若形成的四邊形 為菱形,則所有滿足條件的之和為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負(fù)方向平移a個單位長度后,點C恰好落在雙曲線在第一象限的分支上,則a的值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com